erikayurika commited on
Commit
7cf0db3
·
verified ·
1 Parent(s): bdde6b2

Upload 94 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +24 -0
  2. .github/workflows/publish.yml +22 -0
  3. .gitignore +8 -0
  4. BIG_IMAGE.md +6 -0
  5. CN.md +39 -0
  6. LICENSE +201 -0
  7. PARAMS.md +47 -0
  8. RAUNET.md +39 -0
  9. README.md +262 -0
  10. __init__.py +62 -0
  11. brushnet/brushnet.json +58 -0
  12. brushnet/brushnet.py +949 -0
  13. brushnet/brushnet_ca.py +983 -0
  14. brushnet/brushnet_xl.json +63 -0
  15. brushnet/powerpaint.json +57 -0
  16. brushnet/powerpaint_utils.py +497 -0
  17. brushnet/unet_2d_blocks.py +0 -0
  18. brushnet/unet_2d_condition.py +1355 -0
  19. brushnet_nodes.py +1085 -0
  20. example/BrushNet_SDXL_basic.json +1 -0
  21. example/BrushNet_SDXL_basic.png +3 -0
  22. example/BrushNet_SDXL_upscale.json +1 -0
  23. example/BrushNet_SDXL_upscale.png +3 -0
  24. example/BrushNet_basic.json +1 -0
  25. example/BrushNet_basic.png +3 -0
  26. example/BrushNet_cut_for_inpaint.json +1 -0
  27. example/BrushNet_cut_for_inpaint.png +3 -0
  28. example/BrushNet_image_batch.json +1 -0
  29. example/BrushNet_image_batch.png +3 -0
  30. example/BrushNet_image_big_batch.json +1 -0
  31. example/BrushNet_image_big_batch.png +0 -0
  32. example/BrushNet_inpaint.json +1 -0
  33. example/BrushNet_inpaint.png +3 -0
  34. example/BrushNet_with_CN.json +1 -0
  35. example/BrushNet_with_CN.png +3 -0
  36. example/BrushNet_with_ELLA.json +1 -0
  37. example/BrushNet_with_ELLA.png +3 -0
  38. example/BrushNet_with_IPA.json +1 -0
  39. example/BrushNet_with_IPA.png +3 -0
  40. example/BrushNet_with_LoRA.json +1 -0
  41. example/BrushNet_with_LoRA.png +3 -0
  42. example/PowerPaint_object_removal.json +1 -0
  43. example/PowerPaint_object_removal.png +3 -0
  44. example/PowerPaint_outpaint.json +1 -0
  45. example/PowerPaint_outpaint.png +3 -0
  46. example/RAUNet1.png +3 -0
  47. example/RAUNet2.png +3 -0
  48. example/RAUNet_basic.json +1 -0
  49. example/RAUNet_with_CN.json +1 -0
  50. example/goblin_toy.png +3 -0
.gitattributes ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ example/BrushNet_basic.png filter=lfs diff=lfs merge=lfs -text
2
+ example/BrushNet_cut_for_inpaint.png filter=lfs diff=lfs merge=lfs -text
3
+ example/BrushNet_image_batch.png filter=lfs diff=lfs merge=lfs -text
4
+ example/BrushNet_inpaint.png filter=lfs diff=lfs merge=lfs -text
5
+ example/BrushNet_SDXL_basic.png filter=lfs diff=lfs merge=lfs -text
6
+ example/BrushNet_SDXL_upscale.png filter=lfs diff=lfs merge=lfs -text
7
+ example/BrushNet_with_CN.png filter=lfs diff=lfs merge=lfs -text
8
+ example/BrushNet_with_ELLA.png filter=lfs diff=lfs merge=lfs -text
9
+ example/BrushNet_with_IPA.png filter=lfs diff=lfs merge=lfs -text
10
+ example/BrushNet_with_LoRA.png filter=lfs diff=lfs merge=lfs -text
11
+ example/goblin_toy.png filter=lfs diff=lfs merge=lfs -text
12
+ example/object_removal_fail.png filter=lfs diff=lfs merge=lfs -text
13
+ example/object_removal.png filter=lfs diff=lfs merge=lfs -text
14
+ example/params1.png filter=lfs diff=lfs merge=lfs -text
15
+ example/params13.png filter=lfs diff=lfs merge=lfs -text
16
+ example/PowerPaint_object_removal.png filter=lfs diff=lfs merge=lfs -text
17
+ example/PowerPaint_outpaint.png filter=lfs diff=lfs merge=lfs -text
18
+ example/RAUNet1.png filter=lfs diff=lfs merge=lfs -text
19
+ example/RAUNet2.png filter=lfs diff=lfs merge=lfs -text
20
+ example/sleeping_cat_inpaint1.png filter=lfs diff=lfs merge=lfs -text
21
+ example/sleeping_cat_inpaint3.png filter=lfs diff=lfs merge=lfs -text
22
+ example/sleeping_cat_inpaint5.png filter=lfs diff=lfs merge=lfs -text
23
+ example/sleeping_cat_inpaint6.png filter=lfs diff=lfs merge=lfs -text
24
+ example/test_image3.png filter=lfs diff=lfs merge=lfs -text
.github/workflows/publish.yml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Publish to Comfy registry
2
+ on:
3
+ workflow_dispatch:
4
+ push:
5
+ branches:
6
+ - main
7
+ - master
8
+ paths:
9
+ - "pyproject.toml"
10
+
11
+ jobs:
12
+ publish-node:
13
+ name: Publish Custom Node to registry
14
+ runs-on: ubuntu-latest
15
+ steps:
16
+ - name: Check out code
17
+ uses: actions/checkout@v4
18
+ - name: Publish Custom Node
19
+ uses: Comfy-Org/publish-node-action@main
20
+ with:
21
+ ## Add your own personal access token to your Github Repository secrets and reference it here.
22
+ personal_access_token: ${{ secrets.COMFY_REGISTRY_KEY }}
.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ **/__pycache__/
2
+ .vscode/
3
+ *.tmp
4
+ *.dblite
5
+ *.log
6
+ *.part
7
+
8
+ Dockerfile
BIG_IMAGE.md ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ![example workflow](example/BrushNet_cut_for_inpaint.png?raw=true)
2
+
3
+ [workflow](example/BrushNet_cut_for_inpaint.json)
4
+
5
+ When you work with big image and your inpaint mask is small it is better to cut part of the image, work with it and then blend it back.
6
+ I created a node for such workflow, see example.
CN.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## ControlNet Canny Edge
2
+
3
+ Let's take the pestered cake and try to inpaint it again. Now I would like to use a sleeping cat for it:
4
+
5
+ ![sleeping cat](example/sleeping_cat.png?raw=true)
6
+
7
+ I use Canny Edge node from [comfyui_controlnet_aux](https://github.com/Fannovel16/comfyui_controlnet_aux). Don't forget to resize canny edge mask to 512 pixels:
8
+
9
+ ![sleeping cat inpaint](example/sleeping_cat_inpaint1.png?raw=true)
10
+
11
+ Let's look at the result:
12
+
13
+ ![sleeping cat inpaint](example/sleeping_cat_inpaint2.png?raw=true)
14
+
15
+ The first problem I see here is some kind of object behind the cat. Such objects appear since the inpainting mask strictly aligns with the removed object, the cake in our case. To remove such artifact we should expand our mask a little:
16
+
17
+ ![sleeping cat inpaint](example/sleeping_cat_inpaint3.png?raw=true)
18
+
19
+ Now. what's up with cat back and tail? Let's see the inpainting mask and canny edge mask side to side:
20
+
21
+ ![masks](example/sleeping_cat_inpaint4.png?raw=true)
22
+
23
+ The inpainting works (mostly) only in masked (white) area, so we cut off cat's back. **The ControlNet mask should be inside the inpaint mask.**
24
+
25
+ To address the issue I resized the mask to 256 pixels:
26
+
27
+ ![sleeping cat inpaint](example/sleeping_cat_inpaint5.png?raw=true)
28
+
29
+ This is better but still have a room for improvement. The problem with edge mask downsampling is that edge lines tend to be broken and after some size we will got a mess:
30
+
31
+ ![sleeping cat inpaint](example/sleeping_cat_inpaint6.png?raw=true)
32
+
33
+ Look at the edge mask, at this resolution it is so broken:
34
+
35
+ ![masks](example/sleeping_cat_mask.png?raw=true)
36
+
37
+
38
+
39
+
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
PARAMS.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Start At and End At parameters usage
2
+
3
+ ### start_at
4
+
5
+ Let's start with a ELLA outpaint [workflow](example/BrushNet_with_ELLA.json) and switch off Blend Inpaint node:
6
+
7
+ ![example workflow](example/params1.png?raw=true)
8
+
9
+ For this example I use "wargaming shop showcase" prompt, `dpmpp_2m` deterministic sampler and `karras` scheduler with 15 steps. This is the result:
10
+
11
+ ![goblin in the shop](example/params2.png?raw=true)
12
+
13
+ The `start_at` BrushNet node parameter allows us to delay BrushNet inference for some steps, so the base model will do all the job. Let's see what the result will be without BrushNet. For this I set up `start_at` parameter to 20 - it should be more then `steps` in KSampler node:
14
+
15
+ ![the shop](example/params3.png?raw=true)
16
+
17
+ So, if we apply BrushNet from the beginning (`start_at` equals 0), the resulting scene will be heavily influenced by BrushNet image. The more we increase this parameter, the more scene will be based on prompt. Let's compare:
18
+
19
+ | `start_at` = 1 | `start_at` = 2 | `start_at` = 3 |
20
+ |:--------------:|:--------------:|:--------------:|
21
+ | ![p1](example/params4.png?raw=true) | ![p2](example/params5.png?raw=true) | ![p3](example/params6.png?raw=true) |
22
+ | `start_at` = 4 | `start_at` = 5 | `start_at` = 6 |
23
+ | ![p1](example/params7.png?raw=true) | ![p2](example/params8.png?raw=true) | ![p3](example/params9.png?raw=true) |
24
+ | `start_at` = 7 | `start_at` = 8 | `start_at` = 9 |
25
+ | ![p1](example/params10.png?raw=true) | ![p2](example/params11.png?raw=true) | ![p3](example/params12.png?raw=true) |
26
+
27
+ Look how the floor is aligned with toy's base - at some step it looses consistency. The results will depend on type of sampler and number of KSampler steps, of course.
28
+
29
+ ### end_at
30
+
31
+ The `end_at` parameter switches off BrushNet at the last steps. If you use deterministic sampler it will only influences details on last steps, but stochastic samplers can change the whole scene. For a description of samplers see, for example, Matteo Spinelli's [video on ComfyUI basics](https://youtu.be/_C7kR2TFIX0?t=516).
32
+
33
+ Here I use basic BrushNet inpaint [example](example/BrushNet_basic.json), with "intricate teapot" prompt, `dpmpp_2m` deterministic sampler and `karras` scheduler with 15 steps:
34
+
35
+ ![example workflow](example/params13.png?raw=true)
36
+
37
+ There are almost no changes when we set 'end_at' paramter to 10, but starting from it:
38
+
39
+ | `end_at` = 10 | `end_at` = 9 | `end_at` = 8 |
40
+ |:--------------:|:--------------:|:--------------:|
41
+ | ![p1](example/params14.png?raw=true) | ![p2](example/params15.png?raw=true) | ![p3](example/params16.png?raw=true) |
42
+ | `end_at` = 7 | `end_at` = 6 | `end_at` = 5 |
43
+ | ![p1](example/params17.png?raw=true) | ![p2](example/params18.png?raw=true) | ![p3](example/params19.png?raw=true) |
44
+ | `end_at` = 4 | `end_at` = 3 | `end_at` = 2 |
45
+ | ![p1](example/params20.png?raw=true) | ![p2](example/params21.png?raw=true) | ![p3](example/params22.png?raw=true) |
46
+
47
+ You can see how the scene was completely redrawn.
RAUNET.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ During investigation of compatibility issues with [WASasquatch's FreeU_Advanced](https://github.com/WASasquatch/FreeU_Advanced/tree/main) and [blepping's jank HiDiffusion](https://github.com/blepping/comfyui_jankhidiffusion) nodes I stumbled upon some quite hard problems. There are `FreeU` nodes in ComfyUI, but no such for HiDiffusion, so I decided to implement RAUNet on base of my BrushNet implementation. **blepping**, I am sorry. :)
2
+
3
+ ### RAUNet
4
+
5
+ What is RAUNet? I know many of you saw and generate images with a lot of limbs, fingers and faces all morphed together.
6
+
7
+ The authors of HiDiffusion invent simple, yet efficient trick to alleviate this problem. Here is an example:
8
+
9
+ ![example workflow](example/RAUNet1.png?raw=true)
10
+
11
+ [workflow](example/RAUNet_basic.json)
12
+
13
+ The left picture is created using ZavyChromaXL checkpoint on 2048x2048 canvas. The right one uses RAUNet.
14
+
15
+ In my experience the node is helpful but quite sensitive to its parameters. And there is no universal solution - you should adjust them for every new image you generate. It also lowers model's imagination, you usually get only what you described in the prompt. Look at the example: in first you have a forest in the background, but RAUNet deleted all except fox which is described in the prompt.
16
+
17
+ From the [paper](https://arxiv.org/abs/2311.17528): Diffusion models denoise from structures to details. RAU-Net introduces additional downsampling and upsampling operations, leading to a certain degree of information loss. In the early stages of denoising, RAU-Net can generate reasonable structures with minimal impact from information loss. However, in the later stages of denoising when generating fine details, the information loss in RAU-Net results in the loss of image details and a degradation in quality.
18
+
19
+ ### Parameters
20
+
21
+ There are two independent parts in this node: DU (Downsample/Upsample) and XA (CrossAttention). The four parameters are the start and end steps for applying these parts.
22
+
23
+ The Downsample/Upsample part lowers models degrees of freedom. If you apply it a lot (for more steps) the resulting images will have a lot of symmetries.
24
+
25
+ The CrossAttension part lowers number of objects which model tracks in image.
26
+
27
+ Usually you apply DU and after several steps apply XA, sometimes you will need only XA, you should try it yourself.
28
+
29
+ ### Compatibility
30
+
31
+ It is compatible with BrushNet and most other nodes.
32
+
33
+ This is ControlNet example. The lower image is pure model, the upper is after using RAUNet. You can see small fox and two tails in lower image.
34
+
35
+ ![example workflow](example/RAUNet2.png?raw=true)
36
+
37
+ [workflow](example/RAUNet_with_CN.json)
38
+
39
+ The node can be implemented for any model. Right now it can be applied to SD15 and SDXL models.
README.md ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## ComfyUI-BrushNet
2
+
3
+ These are custom nodes for ComfyUI native implementation of
4
+
5
+ - Brushnet: ["BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"](https://arxiv.org/abs/2403.06976)
6
+ - PowerPaint: [A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting](https://arxiv.org/abs/2312.03594)
7
+ - HiDiffusion: [HiDiffusion: Unlocking Higher-Resolution Creativity and Efficiency in Pretrained Diffusion Models](https://arxiv.org/abs/2311.17528)
8
+
9
+ My contribution is limited to the ComfyUI adaptation, and all credit goes to the authors of the papers.
10
+
11
+ ## Updates
12
+
13
+ May 16, 2024. Internal rework to improve compatibility with other nodes. [RAUNet](RAUNET.md) is implemented.
14
+
15
+ May 12, 2024. CutForInpaint node, see [example](BIG_IMAGE.md).
16
+
17
+ May 11, 2024. Image batch is implemented. You can even add BrushNet to AnimateDiff vid2vid workflow, but they don't work together - they are different models and both try to patch UNet. Added some more examples.
18
+
19
+ May 6, 2024. PowerPaint v2 model is implemented. After update your workflow probably will not work. Don't panic! Check `end_at` parameter of BrushNode, if it equals 1, change it to some big number. Read about parameters in Usage section below.
20
+
21
+ May 2, 2024. BrushNet SDXL is live. It needs positive and negative conditioning though, so workflow changes a little, see example.
22
+
23
+ Apr 28, 2024. Another rework, sorry for inconvenience. But now BrushNet is native to ComfyUI. Famous cubiq's [IPAdapter Plus](https://github.com/cubiq/ComfyUI_IPAdapter_plus) is now working with BrushNet! I hope... :) Please, report any bugs you found.
24
+
25
+ Apr 18, 2024. Complete rework, no more custom `diffusers` library. It is possible to use LoRA models.
26
+
27
+ Apr 11, 2024. Initial commit.
28
+
29
+ ## Plans
30
+
31
+ - [x] BrushNet SDXL
32
+ - [x] PowerPaint v2
33
+ - [x] Image batch
34
+
35
+ ## Installation
36
+
37
+ Clone the repo into the `custom_nodes` directory and install the requirements:
38
+
39
+ ```
40
+ git clone https://github.com/nullquant/ComfyUI-BrushNet.git
41
+ pip install -r requirements.txt
42
+ ```
43
+
44
+ Checkpoints of BrushNet can be downloaded from [here](https://drive.google.com/drive/folders/1fqmS1CEOvXCxNWFrsSYd_jHYXxrydh1n?usp=drive_link).
45
+
46
+ The checkpoint in `segmentation_mask_brushnet_ckpt` provides checkpoints trained on BrushData, which has segmentation prior (mask are with the same shape of objects). The `random_mask_brushnet_ckpt` provides a more general ckpt for random mask shape.
47
+
48
+ `segmentation_mask_brushnet_ckpt` and `random_mask_brushnet_ckpt` contains BrushNet for SD 1.5 models while
49
+ `segmentation_mask_brushnet_ckpt_sdxl_v0` and `random_mask_brushnet_ckpt_sdxl_v0` for SDXL.
50
+
51
+ You should place `diffusion_pytorch_model.safetensors` files to your `models/inpaint` folder. You can also specify `inpaint` folder in your `extra_model_paths.yaml`.
52
+
53
+ For PowerPaint you should download three files. Both `diffusion_pytorch_model.safetensors` and `pytorch_model.bin` from [here](https://huggingface.co/JunhaoZhuang/PowerPaint-v2-1/tree/main/PowerPaint_Brushnet) should be placed in your `models/inpaint` folder.
54
+
55
+ Also you need SD1.5 text encoder model `model.safetensors`. You can take it from [here](https://huggingface.co/ashllay/stable-diffusion-v1-5-archive/tree/main/text_encoder) or from another place. You can also use fp16 [version](https://huggingface.co/nmkd/stable-diffusion-1.5-fp16/tree/main/text_encoder). It should be placed in your `models/clip` folder.
56
+
57
+ This is a structure of my `models/inpaint` folder:
58
+
59
+ ![inpaint folder](example/inpaint_folder.png?raw=true)
60
+
61
+ Yours can be different.
62
+
63
+ ## Usage
64
+
65
+ Below is an example for the intended workflow. The [workflow](example/BrushNet_basic.json) for the example can be found inside the 'example' directory.
66
+
67
+ ![example workflow](example/BrushNet_basic.png?raw=true)
68
+
69
+ <details>
70
+ <summary>SDXL</summary>
71
+
72
+ ![example workflow](example/BrushNet_SDXL_basic.png?raw=true)
73
+
74
+ [workflow](example/BrushNet_SDXL_basic.json)
75
+
76
+ </details>
77
+
78
+ <details>
79
+ <summary>IPAdapter plus</summary>
80
+
81
+ ![example workflow](example/BrushNet_with_IPA.png?raw=true)
82
+
83
+ [workflow](example/BrushNet_with_IPA.json)
84
+
85
+ </details>
86
+
87
+ <details>
88
+ <summary>LoRA</summary>
89
+
90
+ ![example workflow](example/BrushNet_with_LoRA.png?raw=true)
91
+
92
+ [workflow](example/BrushNet_with_LoRA.json)
93
+
94
+ </details>
95
+
96
+ <details>
97
+ <summary>Blending inpaint</summary>
98
+
99
+ ![example workflow](example/BrushNet_inpaint.png?raw=true)
100
+
101
+ Sometimes inference and VAE broke image, so you need to blend inpaint image with the original: [workflow](example/BrushNet_inpaint.json). You can see blurred and broken text after inpainting in the first image and how I suppose to repair it.
102
+
103
+ </details>
104
+
105
+ <details>
106
+ <summary>ControlNet</summary>
107
+
108
+ ![example workflow](example/BrushNet_with_CN.png?raw=true)
109
+
110
+ [workflow](example/BrushNet_with_CN.json)
111
+
112
+ [ControlNet canny edge](CN.md)
113
+
114
+ </details>
115
+
116
+ <details>
117
+ <summary>ELLA outpaint</summary>
118
+
119
+ ![example workflow](example/BrushNet_with_ELLA.png?raw=true)
120
+
121
+ [workflow](example/BrushNet_with_ELLA.json)
122
+
123
+ </details>
124
+
125
+ <details>
126
+ <summary>Upscale</summary>
127
+
128
+ ![example workflow](example/BrushNet_SDXL_upscale.png?raw=true)
129
+
130
+ [workflow](example/BrushNet_SDXL_upscale.json)
131
+
132
+ To upscale you should use base model, not BrushNet. The same is true for conditioning. Latent upscaling between BrushNet and KSampler will not work or will give you wierd results. These limitations are due to structure of BrushNet and its influence on UNet calculations.
133
+
134
+ </details>
135
+
136
+ <details>
137
+ <summary>Image batch</summary>
138
+
139
+ ![example workflow](example/BrushNet_image_batch.png?raw=true)
140
+
141
+ [workflow](example/BrushNet_image_batch.json)
142
+
143
+ If you have OOM problems, you can use Evolved Sampling from [AnimateDiff-Evolved](https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved):
144
+
145
+ ![example workflow](example/BrushNet_image_big_batch.png?raw=true)
146
+
147
+ [workflow](example/BrushNet_image_big_batch.json)
148
+
149
+ In Context Options set context_length to number of images which can be loaded into VRAM. Images will be processed in chunks of this size.
150
+
151
+ </details>
152
+
153
+
154
+ <details>
155
+ <summary>Big image inpaint</summary>
156
+
157
+ ![example workflow](example/BrushNet_cut_for_inpaint.png?raw=true)
158
+
159
+ [workflow](example/BrushNet_cut_for_inpaint.json)
160
+
161
+ When you work with big image and your inpaint mask is small it is better to cut part of the image, work with it and then blend it back.
162
+ I created a node for such workflow, see example.
163
+
164
+ </details>
165
+
166
+
167
+ <details>
168
+ <summary>PowerPaint outpaint</summary>
169
+
170
+ ![example workflow](example/PowerPaint_outpaint.png?raw=true)
171
+
172
+ [workflow](example/PowerPaint_outpaint.json)
173
+
174
+ </details>
175
+
176
+ <details>
177
+ <summary>PowerPaint object removal</summary>
178
+
179
+ ![example workflow](example/PowerPaint_object_removal.png?raw=true)
180
+
181
+ [workflow](example/PowerPaint_object_removal.json)
182
+
183
+ It is often hard to completely remove the object, especially if it is at the front:
184
+
185
+ ![object removal example](example/object_removal_fail.png?raw=true)
186
+
187
+ You should try to add object description to negative prompt and describe empty scene, like here:
188
+
189
+ ![object removal example](example/object_removal.png?raw=true)
190
+
191
+ </details>
192
+
193
+ ### Parameters
194
+
195
+ #### Brushnet Loader
196
+
197
+ - `dtype`, defaults to `torch.float16`. The torch.dtype of BrushNet. If you have old GPU or NVIDIA 16 series card try to switch to `torch.float32`.
198
+
199
+ #### Brushnet
200
+
201
+ - `scale`, defaults to 1.0: The "strength" of BrushNet. The outputs of the BrushNet are multiplied by `scale` before they are added to the residual in the original unet.
202
+ - `start_at`, defaults to 0: step at which the BrushNet starts applying.
203
+ - `end_at`, defaults to 10000: step at which the BrushNet stops applying.
204
+
205
+ [Here](PARAMS.md) are examples of use these two last parameters.
206
+
207
+ #### PowerPaint
208
+
209
+ - `CLIP`: PowerPaint CLIP that should be passed from PowerPaintCLIPLoader node.
210
+ - `fitting`: PowerPaint fitting degree.
211
+ - `function`: PowerPaint function, see its [page](https://github.com/open-mmlab/PowerPaint) for details.
212
+ - `save_memory`: If this option is set, the attention module splits the input tensor in slices to compute attention in several steps. This is useful for saving some memory in exchange for a decrease in speed. If you run out of VRAM or get `Error: total bytes of NDArray > 2**32` on Mac try to set this option to `max`.
213
+
214
+ When using certain network functions, the authors of PowerPaint recommend adding phrases to the prompt:
215
+
216
+ - object removal: `empty scene blur`
217
+ - context aware: `empty scene`
218
+ - outpainting: `empty scene`
219
+
220
+ Many of ComfyUI users use custom text generation nodes, CLIP nodes and a lot of other conditioning. I don't want to break all of these nodes, so I didn't add prompt updating and instead rely on users. Also my own experiments show that these additions to prompt are not strictly necessary.
221
+
222
+ The latent image can be from BrushNet node or not, but it should be the same size as original image (divided by 8 in latent space).
223
+
224
+ The both conditioning `positive` and `negative` in BrushNet and PowerPaint nodes are used for calculation inside, but then simply copied to output.
225
+
226
+ Be advised, not all workflows and nodes will work with BrushNet due to its structure. Also put model changes before BrushNet nodes, not after. If you need model to work with image after BrushNet inference use base one (see Upscale example below).
227
+
228
+ #### RAUNet
229
+
230
+ - `du_start`, defaults to 0: step at which the Downsample/Upsample resize starts applying.
231
+ - `du_end`, defaults to 4: step at which the Downsample/Upsample resize stops applying.
232
+ - `xa_start`, defaults to 4: step at which the CrossAttention resize starts applying.
233
+ - `xa_end`, defaults to 10: step at which the CrossAttention resize stops applying.
234
+
235
+ For an examples and explanation, please look [here](RAUNET.md).
236
+
237
+ ## Limitations
238
+
239
+ BrushNet has some limitations (from the [paper](https://arxiv.org/abs/2403.06976)):
240
+
241
+ - The quality and content generated by the model are heavily dependent on the chosen base model.
242
+ The results can exhibit incoherence if, for example, the given image is a natural image while the base model primarily focuses on anime.
243
+ - Even with BrushNet, we still observe poor generation results in cases where the given mask has an unusually shaped
244
+ or irregular form, or when the given text does not align well with the masked image.
245
+
246
+ ## Notes
247
+
248
+ Unfortunately, due to the nature of BrushNet code some nodes are not compatible with these, since we are trying to patch the same ComfyUI's functions.
249
+
250
+ List of known uncompartible nodes.
251
+
252
+ - [WASasquatch's FreeU_Advanced](https://github.com/WASasquatch/FreeU_Advanced/tree/main)
253
+ - [blepping's jank HiDiffusion](https://github.com/blepping/comfyui_jankhidiffusion)
254
+
255
+ ## Credits
256
+
257
+ The code is based on
258
+
259
+ - [BrushNet](https://github.com/TencentARC/BrushNet)
260
+ - [PowerPaint](https://github.com/zhuang2002/PowerPaint)
261
+ - [HiDiffusion](https://github.com/megvii-research/HiDiffusion)
262
+ - [diffusers](https://github.com/huggingface/diffusers)
__init__.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .brushnet_nodes import BrushNetLoader, BrushNet, BlendInpaint, PowerPaintCLIPLoader, PowerPaint, CutForInpaint
2
+ from .raunet_nodes import RAUNet
3
+ import torch
4
+ from subprocess import getoutput
5
+
6
+ """
7
+ @author: nullquant
8
+ @title: BrushNet
9
+ @nickname: BrushName nodes
10
+ @description: These are custom nodes for ComfyUI native implementation of BrushNet, PowerPaint and RAUNet models
11
+ """
12
+
13
+ class Terminal:
14
+
15
+ @classmethod
16
+ def INPUT_TYPES(s):
17
+ return { "required": {
18
+ "text": ("STRING", {"multiline": True})
19
+ }
20
+ }
21
+
22
+ CATEGORY = "utils"
23
+ RETURN_TYPES = ("IMAGE", )
24
+ RETURN_NAMES = ("image", )
25
+ OUTPUT_NODE = True
26
+
27
+ FUNCTION = "execute"
28
+
29
+ def execute(self, text):
30
+ if text[0] == '"' and text[-1] == '"':
31
+ out = getoutput(f"{text[1:-1]}")
32
+ print(out)
33
+ else:
34
+ exec(f"{text}")
35
+ return (torch.zeros(1, 128, 128, 4), )
36
+
37
+
38
+
39
+ # A dictionary that contains all nodes you want to export with their names
40
+ # NOTE: names should be globally unique
41
+ NODE_CLASS_MAPPINGS = {
42
+ "BrushNetLoader": BrushNetLoader,
43
+ "BrushNet": BrushNet,
44
+ "BlendInpaint": BlendInpaint,
45
+ "PowerPaintCLIPLoader": PowerPaintCLIPLoader,
46
+ "PowerPaint": PowerPaint,
47
+ "CutForInpaint": CutForInpaint,
48
+ "RAUNet": RAUNet,
49
+ "Terminal": Terminal,
50
+ }
51
+
52
+ # A dictionary that contains the friendly/humanly readable titles for the nodes
53
+ NODE_DISPLAY_NAME_MAPPINGS = {
54
+ "BrushNetLoader": "BrushNet Loader",
55
+ "BrushNet": "BrushNet",
56
+ "BlendInpaint": "Blend Inpaint",
57
+ "PowerPaintCLIPLoader": "PowerPaint CLIP Loader",
58
+ "PowerPaint": "PowerPaint",
59
+ "CutForInpaint": "Cut For Inpaint",
60
+ "RAUNet": "RAUNet",
61
+ "Terminal": "Terminal",
62
+ }
brushnet/brushnet.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "BrushNetModel",
3
+ "_diffusers_version": "0.27.0.dev0",
4
+ "_name_or_path": "runs/logs/brushnet_randommask/checkpoint-100000",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": null,
7
+ "addition_embed_type_num_heads": 64,
8
+ "addition_time_embed_dim": null,
9
+ "attention_head_dim": 8,
10
+ "block_out_channels": [
11
+ 320,
12
+ 640,
13
+ 1280,
14
+ 1280
15
+ ],
16
+ "brushnet_conditioning_channel_order": "rgb",
17
+ "class_embed_type": null,
18
+ "conditioning_channels": 5,
19
+ "conditioning_embedding_out_channels": [
20
+ 16,
21
+ 32,
22
+ 96,
23
+ 256
24
+ ],
25
+ "cross_attention_dim": 768,
26
+ "down_block_types": [
27
+ "DownBlock2D",
28
+ "DownBlock2D",
29
+ "DownBlock2D",
30
+ "DownBlock2D"
31
+ ],
32
+ "downsample_padding": 1,
33
+ "encoder_hid_dim": null,
34
+ "encoder_hid_dim_type": null,
35
+ "flip_sin_to_cos": true,
36
+ "freq_shift": 0,
37
+ "global_pool_conditions": false,
38
+ "in_channels": 4,
39
+ "layers_per_block": 2,
40
+ "mid_block_scale_factor": 1,
41
+ "mid_block_type": "MidBlock2D",
42
+ "norm_eps": 1e-05,
43
+ "norm_num_groups": 32,
44
+ "num_attention_heads": null,
45
+ "num_class_embeds": null,
46
+ "only_cross_attention": false,
47
+ "projection_class_embeddings_input_dim": null,
48
+ "resnet_time_scale_shift": "default",
49
+ "transformer_layers_per_block": 1,
50
+ "up_block_types": [
51
+ "UpBlock2D",
52
+ "UpBlock2D",
53
+ "UpBlock2D",
54
+ "UpBlock2D"
55
+ ],
56
+ "upcast_attention": false,
57
+ "use_linear_projection": false
58
+ }
brushnet/brushnet.py ADDED
@@ -0,0 +1,949 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Any, Dict, List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.utils import BaseOutput, logging
10
+ from diffusers.models.attention_processor import (
11
+ ADDED_KV_ATTENTION_PROCESSORS,
12
+ CROSS_ATTENTION_PROCESSORS,
13
+ AttentionProcessor,
14
+ AttnAddedKVProcessor,
15
+ AttnProcessor,
16
+ )
17
+ from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
18
+ from diffusers.models.modeling_utils import ModelMixin
19
+
20
+ from .unet_2d_blocks import (
21
+ CrossAttnDownBlock2D,
22
+ DownBlock2D,
23
+ UNetMidBlock2D,
24
+ UNetMidBlock2DCrossAttn,
25
+ get_down_block,
26
+ get_mid_block,
27
+ get_up_block,
28
+ MidBlock2D
29
+ )
30
+
31
+ from .unet_2d_condition import UNet2DConditionModel
32
+
33
+
34
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
35
+
36
+
37
+ @dataclass
38
+ class BrushNetOutput(BaseOutput):
39
+ """
40
+ The output of [`BrushNetModel`].
41
+
42
+ Args:
43
+ up_block_res_samples (`tuple[torch.Tensor]`):
44
+ A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should
45
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
46
+ used to condition the original UNet's upsampling activations.
47
+ down_block_res_samples (`tuple[torch.Tensor]`):
48
+ A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
49
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
50
+ used to condition the original UNet's downsampling activations.
51
+ mid_down_block_re_sample (`torch.Tensor`):
52
+ The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
53
+ `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
54
+ Output can be used to condition the original UNet's middle block activation.
55
+ """
56
+
57
+ up_block_res_samples: Tuple[torch.Tensor]
58
+ down_block_res_samples: Tuple[torch.Tensor]
59
+ mid_block_res_sample: torch.Tensor
60
+
61
+
62
+ class BrushNetModel(ModelMixin, ConfigMixin):
63
+ """
64
+ A BrushNet model.
65
+
66
+ Args:
67
+ in_channels (`int`, defaults to 4):
68
+ The number of channels in the input sample.
69
+ flip_sin_to_cos (`bool`, defaults to `True`):
70
+ Whether to flip the sin to cos in the time embedding.
71
+ freq_shift (`int`, defaults to 0):
72
+ The frequency shift to apply to the time embedding.
73
+ down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
74
+ The tuple of downsample blocks to use.
75
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
76
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
77
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
78
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
79
+ The tuple of upsample blocks to use.
80
+ only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
81
+ block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
82
+ The tuple of output channels for each block.
83
+ layers_per_block (`int`, defaults to 2):
84
+ The number of layers per block.
85
+ downsample_padding (`int`, defaults to 1):
86
+ The padding to use for the downsampling convolution.
87
+ mid_block_scale_factor (`float`, defaults to 1):
88
+ The scale factor to use for the mid block.
89
+ act_fn (`str`, defaults to "silu"):
90
+ The activation function to use.
91
+ norm_num_groups (`int`, *optional*, defaults to 32):
92
+ The number of groups to use for the normalization. If None, normalization and activation layers is skipped
93
+ in post-processing.
94
+ norm_eps (`float`, defaults to 1e-5):
95
+ The epsilon to use for the normalization.
96
+ cross_attention_dim (`int`, defaults to 1280):
97
+ The dimension of the cross attention features.
98
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
99
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
100
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
101
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
102
+ encoder_hid_dim (`int`, *optional*, defaults to None):
103
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
104
+ dimension to `cross_attention_dim`.
105
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
106
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
107
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
108
+ attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
109
+ The dimension of the attention heads.
110
+ use_linear_projection (`bool`, defaults to `False`):
111
+ class_embed_type (`str`, *optional*, defaults to `None`):
112
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
113
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
114
+ addition_embed_type (`str`, *optional*, defaults to `None`):
115
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
116
+ "text". "text" will use the `TextTimeEmbedding` layer.
117
+ num_class_embeds (`int`, *optional*, defaults to 0):
118
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
119
+ class conditioning with `class_embed_type` equal to `None`.
120
+ upcast_attention (`bool`, defaults to `False`):
121
+ resnet_time_scale_shift (`str`, defaults to `"default"`):
122
+ Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
123
+ projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
124
+ The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
125
+ `class_embed_type="projection"`.
126
+ brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
127
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
128
+ conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
129
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
130
+ global_pool_conditions (`bool`, defaults to `False`):
131
+ TODO(Patrick) - unused parameter.
132
+ addition_embed_type_num_heads (`int`, defaults to 64):
133
+ The number of heads to use for the `TextTimeEmbedding` layer.
134
+ """
135
+
136
+ _supports_gradient_checkpointing = True
137
+
138
+ @register_to_config
139
+ def __init__(
140
+ self,
141
+ in_channels: int = 4,
142
+ conditioning_channels: int = 5,
143
+ flip_sin_to_cos: bool = True,
144
+ freq_shift: int = 0,
145
+ down_block_types: Tuple[str, ...] = (
146
+ "DownBlock2D",
147
+ "DownBlock2D",
148
+ "DownBlock2D",
149
+ "DownBlock2D",
150
+ ),
151
+ mid_block_type: Optional[str] = "UNetMidBlock2D",
152
+ up_block_types: Tuple[str, ...] = (
153
+ "UpBlock2D",
154
+ "UpBlock2D",
155
+ "UpBlock2D",
156
+ "UpBlock2D",
157
+ ),
158
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
159
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
160
+ layers_per_block: int = 2,
161
+ downsample_padding: int = 1,
162
+ mid_block_scale_factor: float = 1,
163
+ act_fn: str = "silu",
164
+ norm_num_groups: Optional[int] = 32,
165
+ norm_eps: float = 1e-5,
166
+ cross_attention_dim: int = 1280,
167
+ transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
168
+ encoder_hid_dim: Optional[int] = None,
169
+ encoder_hid_dim_type: Optional[str] = None,
170
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8,
171
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
172
+ use_linear_projection: bool = False,
173
+ class_embed_type: Optional[str] = None,
174
+ addition_embed_type: Optional[str] = None,
175
+ addition_time_embed_dim: Optional[int] = None,
176
+ num_class_embeds: Optional[int] = None,
177
+ upcast_attention: bool = False,
178
+ resnet_time_scale_shift: str = "default",
179
+ projection_class_embeddings_input_dim: Optional[int] = None,
180
+ brushnet_conditioning_channel_order: str = "rgb",
181
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
182
+ global_pool_conditions: bool = False,
183
+ addition_embed_type_num_heads: int = 64,
184
+ ):
185
+ super().__init__()
186
+
187
+ # If `num_attention_heads` is not defined (which is the case for most models)
188
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
189
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
190
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
191
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
192
+ # which is why we correct for the naming here.
193
+ num_attention_heads = num_attention_heads or attention_head_dim
194
+
195
+ # Check inputs
196
+ if len(down_block_types) != len(up_block_types):
197
+ raise ValueError(
198
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
199
+ )
200
+
201
+ if len(block_out_channels) != len(down_block_types):
202
+ raise ValueError(
203
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
204
+ )
205
+
206
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
207
+ raise ValueError(
208
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
209
+ )
210
+
211
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
212
+ raise ValueError(
213
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
214
+ )
215
+
216
+ if isinstance(transformer_layers_per_block, int):
217
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
218
+
219
+ # input
220
+ conv_in_kernel = 3
221
+ conv_in_padding = (conv_in_kernel - 1) // 2
222
+ self.conv_in_condition = nn.Conv2d(
223
+ in_channels+conditioning_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
224
+ )
225
+
226
+ # time
227
+ time_embed_dim = block_out_channels[0] * 4
228
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
229
+ timestep_input_dim = block_out_channels[0]
230
+ self.time_embedding = TimestepEmbedding(
231
+ timestep_input_dim,
232
+ time_embed_dim,
233
+ act_fn=act_fn,
234
+ )
235
+
236
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
237
+ encoder_hid_dim_type = "text_proj"
238
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
239
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
240
+
241
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
242
+ raise ValueError(
243
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
244
+ )
245
+
246
+ if encoder_hid_dim_type == "text_proj":
247
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
248
+ elif encoder_hid_dim_type == "text_image_proj":
249
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
250
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
251
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
252
+ self.encoder_hid_proj = TextImageProjection(
253
+ text_embed_dim=encoder_hid_dim,
254
+ image_embed_dim=cross_attention_dim,
255
+ cross_attention_dim=cross_attention_dim,
256
+ )
257
+
258
+ elif encoder_hid_dim_type is not None:
259
+ raise ValueError(
260
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
261
+ )
262
+ else:
263
+ self.encoder_hid_proj = None
264
+
265
+ # class embedding
266
+ if class_embed_type is None and num_class_embeds is not None:
267
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
268
+ elif class_embed_type == "timestep":
269
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
270
+ elif class_embed_type == "identity":
271
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
272
+ elif class_embed_type == "projection":
273
+ if projection_class_embeddings_input_dim is None:
274
+ raise ValueError(
275
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
276
+ )
277
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
278
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
279
+ # 2. it projects from an arbitrary input dimension.
280
+ #
281
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
282
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
283
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
284
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
285
+ else:
286
+ self.class_embedding = None
287
+
288
+ if addition_embed_type == "text":
289
+ if encoder_hid_dim is not None:
290
+ text_time_embedding_from_dim = encoder_hid_dim
291
+ else:
292
+ text_time_embedding_from_dim = cross_attention_dim
293
+
294
+ self.add_embedding = TextTimeEmbedding(
295
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
296
+ )
297
+ elif addition_embed_type == "text_image":
298
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
299
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
300
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
301
+ self.add_embedding = TextImageTimeEmbedding(
302
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
303
+ )
304
+ elif addition_embed_type == "text_time":
305
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
306
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
307
+
308
+ elif addition_embed_type is not None:
309
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
310
+
311
+ self.down_blocks = nn.ModuleList([])
312
+ self.brushnet_down_blocks = nn.ModuleList([])
313
+
314
+ if isinstance(only_cross_attention, bool):
315
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
316
+
317
+ if isinstance(attention_head_dim, int):
318
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
319
+
320
+ if isinstance(num_attention_heads, int):
321
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
322
+
323
+ # down
324
+ output_channel = block_out_channels[0]
325
+
326
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
327
+ brushnet_block = zero_module(brushnet_block)
328
+ self.brushnet_down_blocks.append(brushnet_block)
329
+
330
+ for i, down_block_type in enumerate(down_block_types):
331
+ input_channel = output_channel
332
+ output_channel = block_out_channels[i]
333
+ is_final_block = i == len(block_out_channels) - 1
334
+
335
+ down_block = get_down_block(
336
+ down_block_type,
337
+ num_layers=layers_per_block,
338
+ transformer_layers_per_block=transformer_layers_per_block[i],
339
+ in_channels=input_channel,
340
+ out_channels=output_channel,
341
+ temb_channels=time_embed_dim,
342
+ add_downsample=not is_final_block,
343
+ resnet_eps=norm_eps,
344
+ resnet_act_fn=act_fn,
345
+ resnet_groups=norm_num_groups,
346
+ cross_attention_dim=cross_attention_dim,
347
+ num_attention_heads=num_attention_heads[i],
348
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
349
+ downsample_padding=downsample_padding,
350
+ use_linear_projection=use_linear_projection,
351
+ only_cross_attention=only_cross_attention[i],
352
+ upcast_attention=upcast_attention,
353
+ resnet_time_scale_shift=resnet_time_scale_shift,
354
+ )
355
+ self.down_blocks.append(down_block)
356
+
357
+ for _ in range(layers_per_block):
358
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
359
+ brushnet_block = zero_module(brushnet_block)
360
+ self.brushnet_down_blocks.append(brushnet_block)
361
+
362
+ if not is_final_block:
363
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
364
+ brushnet_block = zero_module(brushnet_block)
365
+ self.brushnet_down_blocks.append(brushnet_block)
366
+
367
+ # mid
368
+ mid_block_channel = block_out_channels[-1]
369
+
370
+ brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
371
+ brushnet_block = zero_module(brushnet_block)
372
+ self.brushnet_mid_block = brushnet_block
373
+
374
+ self.mid_block = get_mid_block(
375
+ mid_block_type,
376
+ transformer_layers_per_block=transformer_layers_per_block[-1],
377
+ in_channels=mid_block_channel,
378
+ temb_channels=time_embed_dim,
379
+ resnet_eps=norm_eps,
380
+ resnet_act_fn=act_fn,
381
+ output_scale_factor=mid_block_scale_factor,
382
+ resnet_time_scale_shift=resnet_time_scale_shift,
383
+ cross_attention_dim=cross_attention_dim,
384
+ num_attention_heads=num_attention_heads[-1],
385
+ resnet_groups=norm_num_groups,
386
+ use_linear_projection=use_linear_projection,
387
+ upcast_attention=upcast_attention,
388
+ )
389
+
390
+ # count how many layers upsample the images
391
+ self.num_upsamplers = 0
392
+
393
+ # up
394
+ reversed_block_out_channels = list(reversed(block_out_channels))
395
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
396
+ reversed_transformer_layers_per_block = (list(reversed(transformer_layers_per_block)))
397
+ only_cross_attention = list(reversed(only_cross_attention))
398
+
399
+ output_channel = reversed_block_out_channels[0]
400
+
401
+ self.up_blocks = nn.ModuleList([])
402
+ self.brushnet_up_blocks = nn.ModuleList([])
403
+
404
+ for i, up_block_type in enumerate(up_block_types):
405
+ is_final_block = i == len(block_out_channels) - 1
406
+
407
+ prev_output_channel = output_channel
408
+ output_channel = reversed_block_out_channels[i]
409
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
410
+
411
+ # add upsample block for all BUT final layer
412
+ if not is_final_block:
413
+ add_upsample = True
414
+ self.num_upsamplers += 1
415
+ else:
416
+ add_upsample = False
417
+
418
+ up_block = get_up_block(
419
+ up_block_type,
420
+ num_layers=layers_per_block+1,
421
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
422
+ in_channels=input_channel,
423
+ out_channels=output_channel,
424
+ prev_output_channel=prev_output_channel,
425
+ temb_channels=time_embed_dim,
426
+ add_upsample=add_upsample,
427
+ resnet_eps=norm_eps,
428
+ resnet_act_fn=act_fn,
429
+ resolution_idx=i,
430
+ resnet_groups=norm_num_groups,
431
+ cross_attention_dim=cross_attention_dim,
432
+ num_attention_heads=reversed_num_attention_heads[i],
433
+ use_linear_projection=use_linear_projection,
434
+ only_cross_attention=only_cross_attention[i],
435
+ upcast_attention=upcast_attention,
436
+ resnet_time_scale_shift=resnet_time_scale_shift,
437
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
438
+ )
439
+ self.up_blocks.append(up_block)
440
+ prev_output_channel = output_channel
441
+
442
+ for _ in range(layers_per_block+1):
443
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
444
+ brushnet_block = zero_module(brushnet_block)
445
+ self.brushnet_up_blocks.append(brushnet_block)
446
+
447
+ if not is_final_block:
448
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
449
+ brushnet_block = zero_module(brushnet_block)
450
+ self.brushnet_up_blocks.append(brushnet_block)
451
+
452
+
453
+ @classmethod
454
+ def from_unet(
455
+ cls,
456
+ unet: UNet2DConditionModel,
457
+ brushnet_conditioning_channel_order: str = "rgb",
458
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
459
+ load_weights_from_unet: bool = True,
460
+ conditioning_channels: int = 5,
461
+ ):
462
+ r"""
463
+ Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`].
464
+
465
+ Parameters:
466
+ unet (`UNet2DConditionModel`):
467
+ The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied
468
+ where applicable.
469
+ """
470
+ transformer_layers_per_block = (
471
+ unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
472
+ )
473
+ encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
474
+ encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
475
+ addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
476
+ addition_time_embed_dim = (
477
+ unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
478
+ )
479
+
480
+ brushnet = cls(
481
+ in_channels=unet.config.in_channels,
482
+ conditioning_channels=conditioning_channels,
483
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
484
+ freq_shift=unet.config.freq_shift,
485
+ down_block_types=["DownBlock2D" for block_name in unet.config.down_block_types],
486
+ mid_block_type='MidBlock2D',
487
+ up_block_types=["UpBlock2D" for block_name in unet.config.down_block_types],
488
+ only_cross_attention=unet.config.only_cross_attention,
489
+ block_out_channels=unet.config.block_out_channels,
490
+ layers_per_block=unet.config.layers_per_block,
491
+ downsample_padding=unet.config.downsample_padding,
492
+ mid_block_scale_factor=unet.config.mid_block_scale_factor,
493
+ act_fn=unet.config.act_fn,
494
+ norm_num_groups=unet.config.norm_num_groups,
495
+ norm_eps=unet.config.norm_eps,
496
+ cross_attention_dim=unet.config.cross_attention_dim,
497
+ transformer_layers_per_block=transformer_layers_per_block,
498
+ encoder_hid_dim=encoder_hid_dim,
499
+ encoder_hid_dim_type=encoder_hid_dim_type,
500
+ attention_head_dim=unet.config.attention_head_dim,
501
+ num_attention_heads=unet.config.num_attention_heads,
502
+ use_linear_projection=unet.config.use_linear_projection,
503
+ class_embed_type=unet.config.class_embed_type,
504
+ addition_embed_type=addition_embed_type,
505
+ addition_time_embed_dim=addition_time_embed_dim,
506
+ num_class_embeds=unet.config.num_class_embeds,
507
+ upcast_attention=unet.config.upcast_attention,
508
+ resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
509
+ projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
510
+ brushnet_conditioning_channel_order=brushnet_conditioning_channel_order,
511
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
512
+ )
513
+
514
+ if load_weights_from_unet:
515
+ conv_in_condition_weight=torch.zeros_like(brushnet.conv_in_condition.weight)
516
+ conv_in_condition_weight[:,:4,...]=unet.conv_in.weight
517
+ conv_in_condition_weight[:,4:8,...]=unet.conv_in.weight
518
+ brushnet.conv_in_condition.weight=torch.nn.Parameter(conv_in_condition_weight)
519
+ brushnet.conv_in_condition.bias=unet.conv_in.bias
520
+
521
+ brushnet.time_proj.load_state_dict(unet.time_proj.state_dict())
522
+ brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
523
+
524
+ if brushnet.class_embedding:
525
+ brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
526
+
527
+ brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(),strict=False)
528
+ brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(),strict=False)
529
+ brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(),strict=False)
530
+
531
+ return brushnet
532
+
533
+ @property
534
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
535
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
536
+ r"""
537
+ Returns:
538
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
539
+ indexed by its weight name.
540
+ """
541
+ # set recursively
542
+ processors = {}
543
+
544
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
545
+ if hasattr(module, "get_processor"):
546
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
547
+
548
+ for sub_name, child in module.named_children():
549
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
550
+
551
+ return processors
552
+
553
+ for name, module in self.named_children():
554
+ fn_recursive_add_processors(name, module, processors)
555
+
556
+ return processors
557
+
558
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
559
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
560
+ r"""
561
+ Sets the attention processor to use to compute attention.
562
+
563
+ Parameters:
564
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
565
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
566
+ for **all** `Attention` layers.
567
+
568
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
569
+ processor. This is strongly recommended when setting trainable attention processors.
570
+
571
+ """
572
+ count = len(self.attn_processors.keys())
573
+
574
+ if isinstance(processor, dict) and len(processor) != count:
575
+ raise ValueError(
576
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
577
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
578
+ )
579
+
580
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
581
+ if hasattr(module, "set_processor"):
582
+ if not isinstance(processor, dict):
583
+ module.set_processor(processor)
584
+ else:
585
+ module.set_processor(processor.pop(f"{name}.processor"))
586
+
587
+ for sub_name, child in module.named_children():
588
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
589
+
590
+ for name, module in self.named_children():
591
+ fn_recursive_attn_processor(name, module, processor)
592
+
593
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
594
+ def set_default_attn_processor(self):
595
+ """
596
+ Disables custom attention processors and sets the default attention implementation.
597
+ """
598
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
599
+ processor = AttnAddedKVProcessor()
600
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
601
+ processor = AttnProcessor()
602
+ else:
603
+ raise ValueError(
604
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
605
+ )
606
+
607
+ self.set_attn_processor(processor)
608
+
609
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
610
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
611
+ r"""
612
+ Enable sliced attention computation.
613
+
614
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
615
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
616
+
617
+ Args:
618
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
619
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
620
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
621
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
622
+ must be a multiple of `slice_size`.
623
+ """
624
+ sliceable_head_dims = []
625
+
626
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
627
+ if hasattr(module, "set_attention_slice"):
628
+ sliceable_head_dims.append(module.sliceable_head_dim)
629
+
630
+ for child in module.children():
631
+ fn_recursive_retrieve_sliceable_dims(child)
632
+
633
+ # retrieve number of attention layers
634
+ for module in self.children():
635
+ fn_recursive_retrieve_sliceable_dims(module)
636
+
637
+ num_sliceable_layers = len(sliceable_head_dims)
638
+
639
+ if slice_size == "auto":
640
+ # half the attention head size is usually a good trade-off between
641
+ # speed and memory
642
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
643
+ elif slice_size == "max":
644
+ # make smallest slice possible
645
+ slice_size = num_sliceable_layers * [1]
646
+
647
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
648
+
649
+ if len(slice_size) != len(sliceable_head_dims):
650
+ raise ValueError(
651
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
652
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
653
+ )
654
+
655
+ for i in range(len(slice_size)):
656
+ size = slice_size[i]
657
+ dim = sliceable_head_dims[i]
658
+ if size is not None and size > dim:
659
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
660
+
661
+ # Recursively walk through all the children.
662
+ # Any children which exposes the set_attention_slice method
663
+ # gets the message
664
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
665
+ if hasattr(module, "set_attention_slice"):
666
+ module.set_attention_slice(slice_size.pop())
667
+
668
+ for child in module.children():
669
+ fn_recursive_set_attention_slice(child, slice_size)
670
+
671
+ reversed_slice_size = list(reversed(slice_size))
672
+ for module in self.children():
673
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
674
+
675
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
676
+ if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
677
+ module.gradient_checkpointing = value
678
+
679
+ def forward(
680
+ self,
681
+ sample: torch.FloatTensor,
682
+ encoder_hidden_states: torch.Tensor,
683
+ brushnet_cond: torch.FloatTensor,
684
+ timestep = None,
685
+ time_emb = None,
686
+ conditioning_scale: float = 1.0,
687
+ class_labels: Optional[torch.Tensor] = None,
688
+ timestep_cond: Optional[torch.Tensor] = None,
689
+ attention_mask: Optional[torch.Tensor] = None,
690
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
691
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
692
+ guess_mode: bool = False,
693
+ return_dict: bool = True,
694
+ debug = False,
695
+ ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
696
+ """
697
+ The [`BrushNetModel`] forward method.
698
+
699
+ Args:
700
+ sample (`torch.FloatTensor`):
701
+ The noisy input tensor.
702
+ timestep (`Union[torch.Tensor, float, int]`):
703
+ The number of timesteps to denoise an input.
704
+ encoder_hidden_states (`torch.Tensor`):
705
+ The encoder hidden states.
706
+ brushnet_cond (`torch.FloatTensor`):
707
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
708
+ conditioning_scale (`float`, defaults to `1.0`):
709
+ The scale factor for BrushNet outputs.
710
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
711
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
712
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
713
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
714
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
715
+ embeddings.
716
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
717
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
718
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
719
+ negative values to the attention scores corresponding to "discard" tokens.
720
+ added_cond_kwargs (`dict`):
721
+ Additional conditions for the Stable Diffusion XL UNet.
722
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
723
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
724
+ guess_mode (`bool`, defaults to `False`):
725
+ In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if
726
+ you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
727
+ return_dict (`bool`, defaults to `True`):
728
+ Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple.
729
+
730
+ Returns:
731
+ [`~models.brushnet.BrushNetOutput`] **or** `tuple`:
732
+ If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is
733
+ returned where the first element is the sample tensor.
734
+ """
735
+
736
+ # check channel order
737
+ channel_order = self.config.brushnet_conditioning_channel_order
738
+
739
+ if channel_order == "rgb":
740
+ # in rgb order by default
741
+ ...
742
+ elif channel_order == "bgr":
743
+ brushnet_cond = torch.flip(brushnet_cond, dims=[1])
744
+ else:
745
+ raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}")
746
+
747
+ # prepare attention_mask
748
+ if attention_mask is not None:
749
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
750
+ attention_mask = attention_mask.unsqueeze(1)
751
+
752
+ if timestep is None and time_emb is None:
753
+ raise ValueError(f"`timestep` and `emb` are both None")
754
+
755
+ #print("BN: sample.device", sample.device)
756
+ #print("BN: TE.device", self.time_embedding.linear_1.weight.device)
757
+
758
+ if timestep is not None:
759
+ # 1. time
760
+ timesteps = timestep
761
+ if not torch.is_tensor(timesteps):
762
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
763
+ # This would be a good case for the `match` statement (Python 3.10+)
764
+ is_mps = sample.device.type == "mps"
765
+ if isinstance(timestep, float):
766
+ dtype = torch.float32 if is_mps else torch.float64
767
+ else:
768
+ dtype = torch.int32 if is_mps else torch.int64
769
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
770
+ elif len(timesteps.shape) == 0:
771
+ timesteps = timesteps[None].to(sample.device)
772
+
773
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
774
+ timesteps = timesteps.expand(sample.shape[0])
775
+
776
+ t_emb = self.time_proj(timesteps)
777
+
778
+ # timesteps does not contain any weights and will always return f32 tensors
779
+ # but time_embedding might actually be running in fp16. so we need to cast here.
780
+ # there might be better ways to encapsulate this.
781
+ t_emb = t_emb.to(dtype=sample.dtype)
782
+
783
+ #print("t_emb.device =",t_emb.device)
784
+
785
+ emb = self.time_embedding(t_emb, timestep_cond)
786
+ aug_emb = None
787
+
788
+ #print('emb.shape', emb.shape)
789
+
790
+ if self.class_embedding is not None:
791
+ if class_labels is None:
792
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
793
+
794
+ if self.config.class_embed_type == "timestep":
795
+ class_labels = self.time_proj(class_labels)
796
+
797
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
798
+ emb = emb + class_emb
799
+
800
+ if self.config.addition_embed_type is not None:
801
+ if self.config.addition_embed_type == "text":
802
+ aug_emb = self.add_embedding(encoder_hidden_states)
803
+
804
+ elif self.config.addition_embed_type == "text_time":
805
+ if "text_embeds" not in added_cond_kwargs:
806
+ raise ValueError(
807
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
808
+ )
809
+ text_embeds = added_cond_kwargs.get("text_embeds")
810
+ if "time_ids" not in added_cond_kwargs:
811
+ raise ValueError(
812
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
813
+ )
814
+ time_ids = added_cond_kwargs.get("time_ids")
815
+ time_embeds = self.add_time_proj(time_ids.flatten())
816
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
817
+
818
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
819
+ add_embeds = add_embeds.to(emb.dtype)
820
+ aug_emb = self.add_embedding(add_embeds)
821
+
822
+ #print('text_embeds', text_embeds.shape, 'time_ids', time_ids.shape, 'time_embeds', time_embeds.shape, 'add__embeds', add_embeds.shape, 'aug_emb', aug_emb.shape)
823
+
824
+ emb = emb + aug_emb if aug_emb is not None else emb
825
+ else:
826
+ emb = time_emb
827
+
828
+ # 2. pre-process
829
+
830
+ brushnet_cond=torch.concat([sample,brushnet_cond],1)
831
+ sample = self.conv_in_condition(brushnet_cond)
832
+
833
+ # 3. down
834
+ down_block_res_samples = (sample,)
835
+ for downsample_block in self.down_blocks:
836
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
837
+ sample, res_samples = downsample_block(
838
+ hidden_states=sample,
839
+ temb=emb,
840
+ encoder_hidden_states=encoder_hidden_states,
841
+ attention_mask=attention_mask,
842
+ cross_attention_kwargs=cross_attention_kwargs,
843
+ )
844
+ else:
845
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
846
+
847
+ down_block_res_samples += res_samples
848
+
849
+ # 4. PaintingNet down blocks
850
+ brushnet_down_block_res_samples = ()
851
+ for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks):
852
+ down_block_res_sample = brushnet_down_block(down_block_res_sample)
853
+ brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,)
854
+
855
+
856
+ # 5. mid
857
+ if self.mid_block is not None:
858
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
859
+ sample = self.mid_block(
860
+ sample,
861
+ emb,
862
+ encoder_hidden_states=encoder_hidden_states,
863
+ attention_mask=attention_mask,
864
+ cross_attention_kwargs=cross_attention_kwargs,
865
+ )
866
+ else:
867
+ sample = self.mid_block(sample, emb)
868
+
869
+ # 6. BrushNet mid blocks
870
+ brushnet_mid_block_res_sample = self.brushnet_mid_block(sample)
871
+
872
+ # 7. up
873
+ up_block_res_samples = ()
874
+ for i, upsample_block in enumerate(self.up_blocks):
875
+ is_final_block = i == len(self.up_blocks) - 1
876
+
877
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
878
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
879
+
880
+ # if we have not reached the final block and need to forward the
881
+ # upsample size, we do it here
882
+ if not is_final_block:
883
+ upsample_size = down_block_res_samples[-1].shape[2:]
884
+
885
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
886
+ sample, up_res_samples = upsample_block(
887
+ hidden_states=sample,
888
+ temb=emb,
889
+ res_hidden_states_tuple=res_samples,
890
+ encoder_hidden_states=encoder_hidden_states,
891
+ cross_attention_kwargs=cross_attention_kwargs,
892
+ upsample_size=upsample_size,
893
+ attention_mask=attention_mask,
894
+ return_res_samples=True
895
+ )
896
+ else:
897
+ sample, up_res_samples = upsample_block(
898
+ hidden_states=sample,
899
+ temb=emb,
900
+ res_hidden_states_tuple=res_samples,
901
+ upsample_size=upsample_size,
902
+ return_res_samples=True
903
+ )
904
+
905
+ up_block_res_samples += up_res_samples
906
+
907
+ # 8. BrushNet up blocks
908
+ brushnet_up_block_res_samples = ()
909
+ for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks):
910
+ up_block_res_sample = brushnet_up_block(up_block_res_sample)
911
+ brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,)
912
+
913
+ # 6. scaling
914
+ if guess_mode and not self.config.global_pool_conditions:
915
+ scales = torch.logspace(-1, 0, len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples), device=sample.device) # 0.1 to 1.0
916
+ scales = scales * conditioning_scale
917
+
918
+ brushnet_down_block_res_samples = [sample * scale for sample, scale in zip(brushnet_down_block_res_samples, scales[:len(brushnet_down_block_res_samples)])]
919
+ brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)]
920
+ brushnet_up_block_res_samples = [sample * scale for sample, scale in zip(brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples)+1:])]
921
+ else:
922
+ brushnet_down_block_res_samples = [sample * conditioning_scale for sample in brushnet_down_block_res_samples]
923
+ brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale
924
+ brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples]
925
+
926
+
927
+ if self.config.global_pool_conditions:
928
+ brushnet_down_block_res_samples = [
929
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples
930
+ ]
931
+ brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True)
932
+ brushnet_up_block_res_samples = [
933
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples
934
+ ]
935
+
936
+ if not return_dict:
937
+ return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples)
938
+
939
+ return BrushNetOutput(
940
+ down_block_res_samples=brushnet_down_block_res_samples,
941
+ mid_block_res_sample=brushnet_mid_block_res_sample,
942
+ up_block_res_samples=brushnet_up_block_res_samples
943
+ )
944
+
945
+
946
+ def zero_module(module):
947
+ for p in module.parameters():
948
+ nn.init.zeros_(p)
949
+ return module
brushnet/brushnet_ca.py ADDED
@@ -0,0 +1,983 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Any, Dict, List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ from torch import nn
6
+
7
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
8
+ from diffusers.utils import BaseOutput, logging
9
+ from diffusers.models.attention_processor import (
10
+ ADDED_KV_ATTENTION_PROCESSORS,
11
+ CROSS_ATTENTION_PROCESSORS,
12
+ AttentionProcessor,
13
+ AttnAddedKVProcessor,
14
+ AttnProcessor,
15
+ )
16
+ from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
17
+ from diffusers.models.modeling_utils import ModelMixin
18
+
19
+ from .unet_2d_blocks import (
20
+ CrossAttnDownBlock2D,
21
+ DownBlock2D,
22
+ UNetMidBlock2D,
23
+ UNetMidBlock2DCrossAttn,
24
+ get_down_block,
25
+ get_mid_block,
26
+ get_up_block,
27
+ MidBlock2D
28
+ )
29
+
30
+ from .unet_2d_condition import UNet2DConditionModel
31
+
32
+
33
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
34
+
35
+
36
+ @dataclass
37
+ class BrushNetOutput(BaseOutput):
38
+ """
39
+ The output of [`BrushNetModel`].
40
+
41
+ Args:
42
+ up_block_res_samples (`tuple[torch.Tensor]`):
43
+ A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should
44
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
45
+ used to condition the original UNet's upsampling activations.
46
+ down_block_res_samples (`tuple[torch.Tensor]`):
47
+ A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
48
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
49
+ used to condition the original UNet's downsampling activations.
50
+ mid_down_block_re_sample (`torch.Tensor`):
51
+ The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
52
+ `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
53
+ Output can be used to condition the original UNet's middle block activation.
54
+ """
55
+
56
+ up_block_res_samples: Tuple[torch.Tensor]
57
+ down_block_res_samples: Tuple[torch.Tensor]
58
+ mid_block_res_sample: torch.Tensor
59
+
60
+
61
+ class BrushNetModel(ModelMixin, ConfigMixin):
62
+ """
63
+ A BrushNet model.
64
+
65
+ Args:
66
+ in_channels (`int`, defaults to 4):
67
+ The number of channels in the input sample.
68
+ flip_sin_to_cos (`bool`, defaults to `True`):
69
+ Whether to flip the sin to cos in the time embedding.
70
+ freq_shift (`int`, defaults to 0):
71
+ The frequency shift to apply to the time embedding.
72
+ down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
73
+ The tuple of downsample blocks to use.
74
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
75
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
76
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
77
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
78
+ The tuple of upsample blocks to use.
79
+ only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
80
+ block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
81
+ The tuple of output channels for each block.
82
+ layers_per_block (`int`, defaults to 2):
83
+ The number of layers per block.
84
+ downsample_padding (`int`, defaults to 1):
85
+ The padding to use for the downsampling convolution.
86
+ mid_block_scale_factor (`float`, defaults to 1):
87
+ The scale factor to use for the mid block.
88
+ act_fn (`str`, defaults to "silu"):
89
+ The activation function to use.
90
+ norm_num_groups (`int`, *optional*, defaults to 32):
91
+ The number of groups to use for the normalization. If None, normalization and activation layers is skipped
92
+ in post-processing.
93
+ norm_eps (`float`, defaults to 1e-5):
94
+ The epsilon to use for the normalization.
95
+ cross_attention_dim (`int`, defaults to 1280):
96
+ The dimension of the cross attention features.
97
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
98
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
99
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
100
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
101
+ encoder_hid_dim (`int`, *optional*, defaults to None):
102
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
103
+ dimension to `cross_attention_dim`.
104
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
105
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
106
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
107
+ attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
108
+ The dimension of the attention heads.
109
+ use_linear_projection (`bool`, defaults to `False`):
110
+ class_embed_type (`str`, *optional*, defaults to `None`):
111
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
112
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
113
+ addition_embed_type (`str`, *optional*, defaults to `None`):
114
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
115
+ "text". "text" will use the `TextTimeEmbedding` layer.
116
+ num_class_embeds (`int`, *optional*, defaults to 0):
117
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
118
+ class conditioning with `class_embed_type` equal to `None`.
119
+ upcast_attention (`bool`, defaults to `False`):
120
+ resnet_time_scale_shift (`str`, defaults to `"default"`):
121
+ Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
122
+ projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
123
+ The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
124
+ `class_embed_type="projection"`.
125
+ brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
126
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
127
+ conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
128
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
129
+ global_pool_conditions (`bool`, defaults to `False`):
130
+ TODO(Patrick) - unused parameter.
131
+ addition_embed_type_num_heads (`int`, defaults to 64):
132
+ The number of heads to use for the `TextTimeEmbedding` layer.
133
+ """
134
+
135
+ _supports_gradient_checkpointing = True
136
+
137
+ @register_to_config
138
+ def __init__(
139
+ self,
140
+ in_channels: int = 4,
141
+ conditioning_channels: int = 5,
142
+ flip_sin_to_cos: bool = True,
143
+ freq_shift: int = 0,
144
+ down_block_types: Tuple[str, ...] = (
145
+ "CrossAttnDownBlock2D",
146
+ "CrossAttnDownBlock2D",
147
+ "CrossAttnDownBlock2D",
148
+ "DownBlock2D",
149
+ ),
150
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
151
+ up_block_types: Tuple[str, ...] = (
152
+ "UpBlock2D",
153
+ "CrossAttnUpBlock2D",
154
+ "CrossAttnUpBlock2D",
155
+ "CrossAttnUpBlock2D",
156
+ ),
157
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
158
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
159
+ layers_per_block: int = 2,
160
+ downsample_padding: int = 1,
161
+ mid_block_scale_factor: float = 1,
162
+ act_fn: str = "silu",
163
+ norm_num_groups: Optional[int] = 32,
164
+ norm_eps: float = 1e-5,
165
+ cross_attention_dim: int = 1280,
166
+ transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
167
+ encoder_hid_dim: Optional[int] = None,
168
+ encoder_hid_dim_type: Optional[str] = None,
169
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8,
170
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
171
+ use_linear_projection: bool = False,
172
+ class_embed_type: Optional[str] = None,
173
+ addition_embed_type: Optional[str] = None,
174
+ addition_time_embed_dim: Optional[int] = None,
175
+ num_class_embeds: Optional[int] = None,
176
+ upcast_attention: bool = False,
177
+ resnet_time_scale_shift: str = "default",
178
+ projection_class_embeddings_input_dim: Optional[int] = None,
179
+ brushnet_conditioning_channel_order: str = "rgb",
180
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
181
+ global_pool_conditions: bool = False,
182
+ addition_embed_type_num_heads: int = 64,
183
+ ):
184
+ super().__init__()
185
+
186
+ # If `num_attention_heads` is not defined (which is the case for most models)
187
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
188
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
189
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
190
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
191
+ # which is why we correct for the naming here.
192
+ num_attention_heads = num_attention_heads or attention_head_dim
193
+
194
+ # Check inputs
195
+ if len(down_block_types) != len(up_block_types):
196
+ raise ValueError(
197
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
198
+ )
199
+
200
+ if len(block_out_channels) != len(down_block_types):
201
+ raise ValueError(
202
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
203
+ )
204
+
205
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
206
+ raise ValueError(
207
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
208
+ )
209
+
210
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
211
+ raise ValueError(
212
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
213
+ )
214
+
215
+ if isinstance(transformer_layers_per_block, int):
216
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
217
+
218
+ # input
219
+ conv_in_kernel = 3
220
+ conv_in_padding = (conv_in_kernel - 1) // 2
221
+ self.conv_in_condition = nn.Conv2d(
222
+ in_channels + conditioning_channels,
223
+ block_out_channels[0],
224
+ kernel_size=conv_in_kernel,
225
+ padding=conv_in_padding,
226
+ )
227
+
228
+ # time
229
+ time_embed_dim = block_out_channels[0] * 4
230
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
231
+ timestep_input_dim = block_out_channels[0]
232
+ self.time_embedding = TimestepEmbedding(
233
+ timestep_input_dim,
234
+ time_embed_dim,
235
+ act_fn=act_fn,
236
+ )
237
+
238
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
239
+ encoder_hid_dim_type = "text_proj"
240
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
241
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
242
+
243
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
244
+ raise ValueError(
245
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
246
+ )
247
+
248
+ if encoder_hid_dim_type == "text_proj":
249
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
250
+ elif encoder_hid_dim_type == "text_image_proj":
251
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
252
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
253
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
254
+ self.encoder_hid_proj = TextImageProjection(
255
+ text_embed_dim=encoder_hid_dim,
256
+ image_embed_dim=cross_attention_dim,
257
+ cross_attention_dim=cross_attention_dim,
258
+ )
259
+
260
+ elif encoder_hid_dim_type is not None:
261
+ raise ValueError(
262
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
263
+ )
264
+ else:
265
+ self.encoder_hid_proj = None
266
+
267
+ # class embedding
268
+ if class_embed_type is None and num_class_embeds is not None:
269
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
270
+ elif class_embed_type == "timestep":
271
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
272
+ elif class_embed_type == "identity":
273
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
274
+ elif class_embed_type == "projection":
275
+ if projection_class_embeddings_input_dim is None:
276
+ raise ValueError(
277
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
278
+ )
279
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
280
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
281
+ # 2. it projects from an arbitrary input dimension.
282
+ #
283
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
284
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
285
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
286
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
287
+ else:
288
+ self.class_embedding = None
289
+
290
+ if addition_embed_type == "text":
291
+ if encoder_hid_dim is not None:
292
+ text_time_embedding_from_dim = encoder_hid_dim
293
+ else:
294
+ text_time_embedding_from_dim = cross_attention_dim
295
+
296
+ self.add_embedding = TextTimeEmbedding(
297
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
298
+ )
299
+ elif addition_embed_type == "text_image":
300
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
301
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
302
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
303
+ self.add_embedding = TextImageTimeEmbedding(
304
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
305
+ )
306
+ elif addition_embed_type == "text_time":
307
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
308
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
309
+
310
+ elif addition_embed_type is not None:
311
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
312
+
313
+ self.down_blocks = nn.ModuleList([])
314
+ self.brushnet_down_blocks = nn.ModuleList([])
315
+
316
+ if isinstance(only_cross_attention, bool):
317
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
318
+
319
+ if isinstance(attention_head_dim, int):
320
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
321
+
322
+ if isinstance(num_attention_heads, int):
323
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
324
+
325
+ # down
326
+ output_channel = block_out_channels[0]
327
+
328
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
329
+ brushnet_block = zero_module(brushnet_block)
330
+ self.brushnet_down_blocks.append(brushnet_block)
331
+
332
+ for i, down_block_type in enumerate(down_block_types):
333
+ input_channel = output_channel
334
+ output_channel = block_out_channels[i]
335
+ is_final_block = i == len(block_out_channels) - 1
336
+
337
+ down_block = get_down_block(
338
+ down_block_type,
339
+ num_layers=layers_per_block,
340
+ transformer_layers_per_block=transformer_layers_per_block[i],
341
+ in_channels=input_channel,
342
+ out_channels=output_channel,
343
+ temb_channels=time_embed_dim,
344
+ add_downsample=not is_final_block,
345
+ resnet_eps=norm_eps,
346
+ resnet_act_fn=act_fn,
347
+ resnet_groups=norm_num_groups,
348
+ cross_attention_dim=cross_attention_dim,
349
+ num_attention_heads=num_attention_heads[i],
350
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
351
+ downsample_padding=downsample_padding,
352
+ use_linear_projection=use_linear_projection,
353
+ only_cross_attention=only_cross_attention[i],
354
+ upcast_attention=upcast_attention,
355
+ resnet_time_scale_shift=resnet_time_scale_shift,
356
+ )
357
+ self.down_blocks.append(down_block)
358
+
359
+ for _ in range(layers_per_block):
360
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
361
+ brushnet_block = zero_module(brushnet_block)
362
+ self.brushnet_down_blocks.append(brushnet_block)
363
+
364
+ if not is_final_block:
365
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
366
+ brushnet_block = zero_module(brushnet_block)
367
+ self.brushnet_down_blocks.append(brushnet_block)
368
+
369
+ # mid
370
+ mid_block_channel = block_out_channels[-1]
371
+
372
+ brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
373
+ brushnet_block = zero_module(brushnet_block)
374
+ self.brushnet_mid_block = brushnet_block
375
+
376
+ self.mid_block = get_mid_block(
377
+ mid_block_type,
378
+ transformer_layers_per_block=transformer_layers_per_block[-1],
379
+ in_channels=mid_block_channel,
380
+ temb_channels=time_embed_dim,
381
+ resnet_eps=norm_eps,
382
+ resnet_act_fn=act_fn,
383
+ output_scale_factor=mid_block_scale_factor,
384
+ resnet_time_scale_shift=resnet_time_scale_shift,
385
+ cross_attention_dim=cross_attention_dim,
386
+ num_attention_heads=num_attention_heads[-1],
387
+ resnet_groups=norm_num_groups,
388
+ use_linear_projection=use_linear_projection,
389
+ upcast_attention=upcast_attention,
390
+ )
391
+
392
+ # count how many layers upsample the images
393
+ self.num_upsamplers = 0
394
+
395
+ # up
396
+ reversed_block_out_channels = list(reversed(block_out_channels))
397
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
398
+ reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
399
+ only_cross_attention = list(reversed(only_cross_attention))
400
+
401
+ output_channel = reversed_block_out_channels[0]
402
+
403
+ self.up_blocks = nn.ModuleList([])
404
+ self.brushnet_up_blocks = nn.ModuleList([])
405
+
406
+ for i, up_block_type in enumerate(up_block_types):
407
+ is_final_block = i == len(block_out_channels) - 1
408
+
409
+ prev_output_channel = output_channel
410
+ output_channel = reversed_block_out_channels[i]
411
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
412
+
413
+ # add upsample block for all BUT final layer
414
+ if not is_final_block:
415
+ add_upsample = True
416
+ self.num_upsamplers += 1
417
+ else:
418
+ add_upsample = False
419
+
420
+ up_block = get_up_block(
421
+ up_block_type,
422
+ num_layers=layers_per_block + 1,
423
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
424
+ in_channels=input_channel,
425
+ out_channels=output_channel,
426
+ prev_output_channel=prev_output_channel,
427
+ temb_channels=time_embed_dim,
428
+ add_upsample=add_upsample,
429
+ resnet_eps=norm_eps,
430
+ resnet_act_fn=act_fn,
431
+ resolution_idx=i,
432
+ resnet_groups=norm_num_groups,
433
+ cross_attention_dim=cross_attention_dim,
434
+ num_attention_heads=reversed_num_attention_heads[i],
435
+ use_linear_projection=use_linear_projection,
436
+ only_cross_attention=only_cross_attention[i],
437
+ upcast_attention=upcast_attention,
438
+ resnet_time_scale_shift=resnet_time_scale_shift,
439
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
440
+ )
441
+ self.up_blocks.append(up_block)
442
+ prev_output_channel = output_channel
443
+
444
+ for _ in range(layers_per_block + 1):
445
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
446
+ brushnet_block = zero_module(brushnet_block)
447
+ self.brushnet_up_blocks.append(brushnet_block)
448
+
449
+ if not is_final_block:
450
+ brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
451
+ brushnet_block = zero_module(brushnet_block)
452
+ self.brushnet_up_blocks.append(brushnet_block)
453
+
454
+ @classmethod
455
+ def from_unet(
456
+ cls,
457
+ unet: UNet2DConditionModel,
458
+ brushnet_conditioning_channel_order: str = "rgb",
459
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
460
+ load_weights_from_unet: bool = True,
461
+ conditioning_channels: int = 5,
462
+ ):
463
+ r"""
464
+ Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`].
465
+
466
+ Parameters:
467
+ unet (`UNet2DConditionModel`):
468
+ The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied
469
+ where applicable.
470
+ """
471
+ transformer_layers_per_block = (
472
+ unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
473
+ )
474
+ encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
475
+ encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
476
+ addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
477
+ addition_time_embed_dim = (
478
+ unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
479
+ )
480
+
481
+ brushnet = cls(
482
+ in_channels=unet.config.in_channels,
483
+ conditioning_channels=conditioning_channels,
484
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
485
+ freq_shift=unet.config.freq_shift,
486
+ # down_block_types=['DownBlock2D','DownBlock2D','DownBlock2D','DownBlock2D'],
487
+ down_block_types=[
488
+ "CrossAttnDownBlock2D",
489
+ "CrossAttnDownBlock2D",
490
+ "CrossAttnDownBlock2D",
491
+ "DownBlock2D",
492
+ ],
493
+ # mid_block_type='MidBlock2D',
494
+ mid_block_type="UNetMidBlock2DCrossAttn",
495
+ # up_block_types=['UpBlock2D','UpBlock2D','UpBlock2D','UpBlock2D'],
496
+ up_block_types=["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"],
497
+ only_cross_attention=unet.config.only_cross_attention,
498
+ block_out_channels=unet.config.block_out_channels,
499
+ layers_per_block=unet.config.layers_per_block,
500
+ downsample_padding=unet.config.downsample_padding,
501
+ mid_block_scale_factor=unet.config.mid_block_scale_factor,
502
+ act_fn=unet.config.act_fn,
503
+ norm_num_groups=unet.config.norm_num_groups,
504
+ norm_eps=unet.config.norm_eps,
505
+ cross_attention_dim=unet.config.cross_attention_dim,
506
+ transformer_layers_per_block=transformer_layers_per_block,
507
+ encoder_hid_dim=encoder_hid_dim,
508
+ encoder_hid_dim_type=encoder_hid_dim_type,
509
+ attention_head_dim=unet.config.attention_head_dim,
510
+ num_attention_heads=unet.config.num_attention_heads,
511
+ use_linear_projection=unet.config.use_linear_projection,
512
+ class_embed_type=unet.config.class_embed_type,
513
+ addition_embed_type=addition_embed_type,
514
+ addition_time_embed_dim=addition_time_embed_dim,
515
+ num_class_embeds=unet.config.num_class_embeds,
516
+ upcast_attention=unet.config.upcast_attention,
517
+ resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
518
+ projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
519
+ brushnet_conditioning_channel_order=brushnet_conditioning_channel_order,
520
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
521
+ )
522
+
523
+ if load_weights_from_unet:
524
+ conv_in_condition_weight = torch.zeros_like(brushnet.conv_in_condition.weight)
525
+ conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight
526
+ conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight
527
+ brushnet.conv_in_condition.weight = torch.nn.Parameter(conv_in_condition_weight)
528
+ brushnet.conv_in_condition.bias = unet.conv_in.bias
529
+
530
+ brushnet.time_proj.load_state_dict(unet.time_proj.state_dict())
531
+ brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
532
+
533
+ if brushnet.class_embedding:
534
+ brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
535
+
536
+ brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
537
+ brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
538
+ brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False)
539
+
540
+ return brushnet.to(unet.dtype)
541
+
542
+ @property
543
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
544
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
545
+ r"""
546
+ Returns:
547
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
548
+ indexed by its weight name.
549
+ """
550
+ # set recursively
551
+ processors = {}
552
+
553
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
554
+ if hasattr(module, "get_processor"):
555
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
556
+
557
+ for sub_name, child in module.named_children():
558
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
559
+
560
+ return processors
561
+
562
+ for name, module in self.named_children():
563
+ fn_recursive_add_processors(name, module, processors)
564
+
565
+ return processors
566
+
567
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
568
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
569
+ r"""
570
+ Sets the attention processor to use to compute attention.
571
+
572
+ Parameters:
573
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
574
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
575
+ for **all** `Attention` layers.
576
+
577
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
578
+ processor. This is strongly recommended when setting trainable attention processors.
579
+
580
+ """
581
+ count = len(self.attn_processors.keys())
582
+
583
+ if isinstance(processor, dict) and len(processor) != count:
584
+ raise ValueError(
585
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
586
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
587
+ )
588
+
589
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
590
+ if hasattr(module, "set_processor"):
591
+ if not isinstance(processor, dict):
592
+ module.set_processor(processor)
593
+ else:
594
+ module.set_processor(processor.pop(f"{name}.processor"))
595
+
596
+ for sub_name, child in module.named_children():
597
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
598
+
599
+ for name, module in self.named_children():
600
+ fn_recursive_attn_processor(name, module, processor)
601
+
602
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
603
+ def set_default_attn_processor(self):
604
+ """
605
+ Disables custom attention processors and sets the default attention implementation.
606
+ """
607
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
608
+ processor = AttnAddedKVProcessor()
609
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
610
+ processor = AttnProcessor()
611
+ else:
612
+ raise ValueError(
613
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
614
+ )
615
+
616
+ self.set_attn_processor(processor)
617
+
618
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
619
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
620
+ r"""
621
+ Enable sliced attention computation.
622
+
623
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
624
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
625
+
626
+ Args:
627
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
628
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
629
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
630
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
631
+ must be a multiple of `slice_size`.
632
+ """
633
+ sliceable_head_dims = []
634
+
635
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
636
+ if hasattr(module, "set_attention_slice"):
637
+ sliceable_head_dims.append(module.sliceable_head_dim)
638
+
639
+ for child in module.children():
640
+ fn_recursive_retrieve_sliceable_dims(child)
641
+
642
+ # retrieve number of attention layers
643
+ for module in self.children():
644
+ fn_recursive_retrieve_sliceable_dims(module)
645
+
646
+ num_sliceable_layers = len(sliceable_head_dims)
647
+
648
+ if slice_size == "auto":
649
+ # half the attention head size is usually a good trade-off between
650
+ # speed and memory
651
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
652
+ elif slice_size == "max":
653
+ # make smallest slice possible
654
+ slice_size = num_sliceable_layers * [1]
655
+
656
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
657
+
658
+ if len(slice_size) != len(sliceable_head_dims):
659
+ raise ValueError(
660
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
661
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
662
+ )
663
+
664
+ for i in range(len(slice_size)):
665
+ size = slice_size[i]
666
+ dim = sliceable_head_dims[i]
667
+ if size is not None and size > dim:
668
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
669
+
670
+ # Recursively walk through all the children.
671
+ # Any children which exposes the set_attention_slice method
672
+ # gets the message
673
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
674
+ if hasattr(module, "set_attention_slice"):
675
+ module.set_attention_slice(slice_size.pop())
676
+
677
+ for child in module.children():
678
+ fn_recursive_set_attention_slice(child, slice_size)
679
+
680
+ reversed_slice_size = list(reversed(slice_size))
681
+ for module in self.children():
682
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
683
+
684
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
685
+ if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
686
+ module.gradient_checkpointing = value
687
+
688
+ def forward(
689
+ self,
690
+ sample: torch.FloatTensor,
691
+ timestep: Union[torch.Tensor, float, int],
692
+ encoder_hidden_states: torch.Tensor,
693
+ brushnet_cond: torch.FloatTensor,
694
+ conditioning_scale: float = 1.0,
695
+ class_labels: Optional[torch.Tensor] = None,
696
+ timestep_cond: Optional[torch.Tensor] = None,
697
+ attention_mask: Optional[torch.Tensor] = None,
698
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
699
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
700
+ guess_mode: bool = False,
701
+ return_dict: bool = True,
702
+ debug=False,
703
+ ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
704
+ """
705
+ The [`BrushNetModel`] forward method.
706
+
707
+ Args:
708
+ sample (`torch.FloatTensor`):
709
+ The noisy input tensor.
710
+ timestep (`Union[torch.Tensor, float, int]`):
711
+ The number of timesteps to denoise an input.
712
+ encoder_hidden_states (`torch.Tensor`):
713
+ The encoder hidden states.
714
+ brushnet_cond (`torch.FloatTensor`):
715
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
716
+ conditioning_scale (`float`, defaults to `1.0`):
717
+ The scale factor for BrushNet outputs.
718
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
719
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
720
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
721
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
722
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
723
+ embeddings.
724
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
725
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
726
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
727
+ negative values to the attention scores corresponding to "discard" tokens.
728
+ added_cond_kwargs (`dict`):
729
+ Additional conditions for the Stable Diffusion XL UNet.
730
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
731
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
732
+ guess_mode (`bool`, defaults to `False`):
733
+ In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if
734
+ you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
735
+ return_dict (`bool`, defaults to `True`):
736
+ Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple.
737
+
738
+ Returns:
739
+ [`~models.brushnet.BrushNetOutput`] **or** `tuple`:
740
+ If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is
741
+ returned where the first element is the sample tensor.
742
+ """
743
+ # check channel order
744
+ channel_order = self.config.brushnet_conditioning_channel_order
745
+
746
+ if channel_order == "rgb":
747
+ # in rgb order by default
748
+ ...
749
+ elif channel_order == "bgr":
750
+ brushnet_cond = torch.flip(brushnet_cond, dims=[1])
751
+ else:
752
+ raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}")
753
+
754
+ if debug: print('BrushNet CA: attn mask')
755
+
756
+ # prepare attention_mask
757
+ if attention_mask is not None:
758
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
759
+ attention_mask = attention_mask.unsqueeze(1)
760
+
761
+ if debug: print('BrushNet CA: time')
762
+
763
+ # 1. time
764
+ timesteps = timestep
765
+ if not torch.is_tensor(timesteps):
766
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
767
+ # This would be a good case for the `match` statement (Python 3.10+)
768
+ is_mps = sample.device.type == "mps"
769
+ if isinstance(timestep, float):
770
+ dtype = torch.float32 if is_mps else torch.float64
771
+ else:
772
+ dtype = torch.int32 if is_mps else torch.int64
773
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
774
+ elif len(timesteps.shape) == 0:
775
+ timesteps = timesteps[None].to(sample.device)
776
+
777
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
778
+ timesteps = timesteps.expand(sample.shape[0])
779
+
780
+ t_emb = self.time_proj(timesteps)
781
+
782
+ # timesteps does not contain any weights and will always return f32 tensors
783
+ # but time_embedding might actually be running in fp16. so we need to cast here.
784
+ # there might be better ways to encapsulate this.
785
+ t_emb = t_emb.to(dtype=sample.dtype)
786
+
787
+ emb = self.time_embedding(t_emb, timestep_cond)
788
+ aug_emb = None
789
+
790
+ if self.class_embedding is not None:
791
+ if class_labels is None:
792
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
793
+
794
+ if self.config.class_embed_type == "timestep":
795
+ class_labels = self.time_proj(class_labels)
796
+
797
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
798
+ emb = emb + class_emb
799
+
800
+ if self.config.addition_embed_type is not None:
801
+ if self.config.addition_embed_type == "text":
802
+ aug_emb = self.add_embedding(encoder_hidden_states)
803
+
804
+ elif self.config.addition_embed_type == "text_time":
805
+ if "text_embeds" not in added_cond_kwargs:
806
+ raise ValueError(
807
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
808
+ )
809
+ text_embeds = added_cond_kwargs.get("text_embeds")
810
+ if "time_ids" not in added_cond_kwargs:
811
+ raise ValueError(
812
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
813
+ )
814
+ time_ids = added_cond_kwargs.get("time_ids")
815
+ time_embeds = self.add_time_proj(time_ids.flatten())
816
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
817
+
818
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
819
+ add_embeds = add_embeds.to(emb.dtype)
820
+ aug_emb = self.add_embedding(add_embeds)
821
+
822
+ emb = emb + aug_emb if aug_emb is not None else emb
823
+
824
+ if debug: print('BrushNet CA: pre-process')
825
+
826
+
827
+ # 2. pre-process
828
+ brushnet_cond = torch.concat([sample, brushnet_cond], 1)
829
+ sample = self.conv_in_condition(brushnet_cond)
830
+
831
+ if debug: print('BrushNet CA: down')
832
+
833
+ # 3. down
834
+ down_block_res_samples = (sample,)
835
+ for downsample_block in self.down_blocks:
836
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
837
+ if debug: print('BrushNet CA (down block with XA): ', type(downsample_block))
838
+ sample, res_samples = downsample_block(
839
+ hidden_states=sample,
840
+ temb=emb,
841
+ encoder_hidden_states=encoder_hidden_states,
842
+ attention_mask=attention_mask,
843
+ cross_attention_kwargs=cross_attention_kwargs,
844
+ debug=debug,
845
+ )
846
+ else:
847
+ if debug: print('BrushNet CA (down block): ', type(downsample_block))
848
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, debug=debug)
849
+
850
+ down_block_res_samples += res_samples
851
+
852
+ if debug: print('BrushNet CA: PP down')
853
+
854
+ # 4. PaintingNet down blocks
855
+ brushnet_down_block_res_samples = ()
856
+ for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks):
857
+ down_block_res_sample = brushnet_down_block(down_block_res_sample)
858
+ brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,)
859
+
860
+ if debug: print('BrushNet CA: PP mid')
861
+
862
+ # 5. mid
863
+ if self.mid_block is not None:
864
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
865
+ sample = self.mid_block(
866
+ sample,
867
+ emb,
868
+ encoder_hidden_states=encoder_hidden_states,
869
+ attention_mask=attention_mask,
870
+ cross_attention_kwargs=cross_attention_kwargs,
871
+ )
872
+ else:
873
+ sample = self.mid_block(sample, emb)
874
+
875
+ if debug: print('BrushNet CA: mid')
876
+
877
+ # 6. BrushNet mid blocks
878
+ brushnet_mid_block_res_sample = self.brushnet_mid_block(sample)
879
+
880
+ if debug: print('BrushNet CA: PP up')
881
+
882
+ # 7. up
883
+ up_block_res_samples = ()
884
+ for i, upsample_block in enumerate(self.up_blocks):
885
+ is_final_block = i == len(self.up_blocks) - 1
886
+
887
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
888
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
889
+
890
+ # if we have not reached the final block and need to forward the
891
+ # upsample size, we do it here
892
+ if not is_final_block:
893
+ upsample_size = down_block_res_samples[-1].shape[2:]
894
+
895
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
896
+ sample, up_res_samples = upsample_block(
897
+ hidden_states=sample,
898
+ temb=emb,
899
+ res_hidden_states_tuple=res_samples,
900
+ encoder_hidden_states=encoder_hidden_states,
901
+ cross_attention_kwargs=cross_attention_kwargs,
902
+ upsample_size=upsample_size,
903
+ attention_mask=attention_mask,
904
+ return_res_samples=True,
905
+ )
906
+ else:
907
+ sample, up_res_samples = upsample_block(
908
+ hidden_states=sample,
909
+ temb=emb,
910
+ res_hidden_states_tuple=res_samples,
911
+ upsample_size=upsample_size,
912
+ return_res_samples=True,
913
+ )
914
+
915
+ up_block_res_samples += up_res_samples
916
+
917
+ if debug: print('BrushNet CA: up')
918
+
919
+ # 8. BrushNet up blocks
920
+ brushnet_up_block_res_samples = ()
921
+ for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks):
922
+ up_block_res_sample = brushnet_up_block(up_block_res_sample)
923
+ brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,)
924
+
925
+ if debug: print('BrushNet CA: scaling')
926
+
927
+ # 6. scaling
928
+ if guess_mode and not self.config.global_pool_conditions:
929
+ scales = torch.logspace(
930
+ -1,
931
+ 0,
932
+ len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples),
933
+ device=sample.device,
934
+ ) # 0.1 to 1.0
935
+ scales = scales * conditioning_scale
936
+
937
+ brushnet_down_block_res_samples = [
938
+ sample * scale
939
+ for sample, scale in zip(
940
+ brushnet_down_block_res_samples, scales[: len(brushnet_down_block_res_samples)]
941
+ )
942
+ ]
943
+ brushnet_mid_block_res_sample = (
944
+ brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)]
945
+ )
946
+ brushnet_up_block_res_samples = [
947
+ sample * scale
948
+ for sample, scale in zip(
949
+ brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples) + 1 :]
950
+ )
951
+ ]
952
+ else:
953
+ brushnet_down_block_res_samples = [
954
+ sample * conditioning_scale for sample in brushnet_down_block_res_samples
955
+ ]
956
+ brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale
957
+ brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples]
958
+
959
+ if self.config.global_pool_conditions:
960
+ brushnet_down_block_res_samples = [
961
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples
962
+ ]
963
+ brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True)
964
+ brushnet_up_block_res_samples = [
965
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples
966
+ ]
967
+
968
+ if debug: print('BrushNet CA: finish')
969
+
970
+ if not return_dict:
971
+ return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples)
972
+
973
+ return BrushNetOutput(
974
+ down_block_res_samples=brushnet_down_block_res_samples,
975
+ mid_block_res_sample=brushnet_mid_block_res_sample,
976
+ up_block_res_samples=brushnet_up_block_res_samples,
977
+ )
978
+
979
+
980
+ def zero_module(module):
981
+ for p in module.parameters():
982
+ nn.init.zeros_(p)
983
+ return module
brushnet/brushnet_xl.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "BrushNetModel",
3
+ "_diffusers_version": "0.27.0.dev0",
4
+ "_name_or_path": "runs/logs/brushnetsdxl_randommask/checkpoint-80000",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": "text_time",
7
+ "addition_embed_type_num_heads": 64,
8
+ "addition_time_embed_dim": 256,
9
+ "attention_head_dim": [
10
+ 5,
11
+ 10,
12
+ 20
13
+ ],
14
+ "block_out_channels": [
15
+ 320,
16
+ 640,
17
+ 1280
18
+ ],
19
+ "brushnet_conditioning_channel_order": "rgb",
20
+ "class_embed_type": null,
21
+ "conditioning_channels": 5,
22
+ "conditioning_embedding_out_channels": [
23
+ 16,
24
+ 32,
25
+ 96,
26
+ 256
27
+ ],
28
+ "cross_attention_dim": 2048,
29
+ "down_block_types": [
30
+ "DownBlock2D",
31
+ "DownBlock2D",
32
+ "DownBlock2D"
33
+ ],
34
+ "downsample_padding": 1,
35
+ "encoder_hid_dim": null,
36
+ "encoder_hid_dim_type": null,
37
+ "flip_sin_to_cos": true,
38
+ "freq_shift": 0,
39
+ "global_pool_conditions": false,
40
+ "in_channels": 4,
41
+ "layers_per_block": 2,
42
+ "mid_block_scale_factor": 1,
43
+ "mid_block_type": "MidBlock2D",
44
+ "norm_eps": 1e-05,
45
+ "norm_num_groups": 32,
46
+ "num_attention_heads": null,
47
+ "num_class_embeds": null,
48
+ "only_cross_attention": false,
49
+ "projection_class_embeddings_input_dim": 2816,
50
+ "resnet_time_scale_shift": "default",
51
+ "transformer_layers_per_block": [
52
+ 1,
53
+ 2,
54
+ 10
55
+ ],
56
+ "up_block_types": [
57
+ "UpBlock2D",
58
+ "UpBlock2D",
59
+ "UpBlock2D"
60
+ ],
61
+ "upcast_attention": null,
62
+ "use_linear_projection": true
63
+ }
brushnet/powerpaint.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "BrushNetModel",
3
+ "_diffusers_version": "0.27.2",
4
+ "act_fn": "silu",
5
+ "addition_embed_type": null,
6
+ "addition_embed_type_num_heads": 64,
7
+ "addition_time_embed_dim": null,
8
+ "attention_head_dim": 8,
9
+ "block_out_channels": [
10
+ 320,
11
+ 640,
12
+ 1280,
13
+ 1280
14
+ ],
15
+ "brushnet_conditioning_channel_order": "rgb",
16
+ "class_embed_type": null,
17
+ "conditioning_channels": 5,
18
+ "conditioning_embedding_out_channels": [
19
+ 16,
20
+ 32,
21
+ 96,
22
+ 256
23
+ ],
24
+ "cross_attention_dim": 768,
25
+ "down_block_types": [
26
+ "CrossAttnDownBlock2D",
27
+ "CrossAttnDownBlock2D",
28
+ "CrossAttnDownBlock2D",
29
+ "DownBlock2D"
30
+ ],
31
+ "downsample_padding": 1,
32
+ "encoder_hid_dim": null,
33
+ "encoder_hid_dim_type": null,
34
+ "flip_sin_to_cos": true,
35
+ "freq_shift": 0,
36
+ "global_pool_conditions": false,
37
+ "in_channels": 4,
38
+ "layers_per_block": 2,
39
+ "mid_block_scale_factor": 1,
40
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
41
+ "norm_eps": 1e-05,
42
+ "norm_num_groups": 32,
43
+ "num_attention_heads": null,
44
+ "num_class_embeds": null,
45
+ "only_cross_attention": false,
46
+ "projection_class_embeddings_input_dim": null,
47
+ "resnet_time_scale_shift": "default",
48
+ "transformer_layers_per_block": 1,
49
+ "up_block_types": [
50
+ "UpBlock2D",
51
+ "CrossAttnUpBlock2D",
52
+ "CrossAttnUpBlock2D",
53
+ "CrossAttnUpBlock2D"
54
+ ],
55
+ "upcast_attention": false,
56
+ "use_linear_projection": false
57
+ }
brushnet/powerpaint_utils.py ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from transformers import CLIPTokenizer
7
+ from typing import Any, List, Optional, Union
8
+
9
+ class TokenizerWrapper:
10
+ """Tokenizer wrapper for CLIPTokenizer. Only support CLIPTokenizer
11
+ currently. This wrapper is modified from https://github.com/huggingface/dif
12
+ fusers/blob/e51f19aee82c8dd874b715a09dbc521d88835d68/src/diffusers/loaders.
13
+ py#L358 # noqa.
14
+
15
+ Args:
16
+ from_pretrained (Union[str, os.PathLike], optional): The *model id*
17
+ of a pretrained model or a path to a *directory* containing
18
+ model weights and config. Defaults to None.
19
+ from_config (Union[str, os.PathLike], optional): The *model id*
20
+ of a pretrained model or a path to a *directory* containing
21
+ model weights and config. Defaults to None.
22
+
23
+ *args, **kwargs: If `from_pretrained` is passed, *args and **kwargs
24
+ will be passed to `from_pretrained` function. Otherwise, *args
25
+ and **kwargs will be used to initialize the model by
26
+ `self._module_cls(*args, **kwargs)`.
27
+ """
28
+
29
+ def __init__(self, tokenizer: CLIPTokenizer):
30
+ self.wrapped = tokenizer
31
+ self.token_map = {}
32
+
33
+ def __getattr__(self, name: str) -> Any:
34
+ if name in self.__dict__:
35
+ return getattr(self, name)
36
+ #if name == "wrapped":
37
+ # return getattr(self, 'wrapped')#super().__getattr__("wrapped")
38
+
39
+ try:
40
+ return getattr(self.wrapped, name)
41
+ except AttributeError:
42
+ raise AttributeError(
43
+ "'name' cannot be found in both "
44
+ f"'{self.__class__.__name__}' and "
45
+ f"'{self.__class__.__name__}.tokenizer'."
46
+ )
47
+
48
+ def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
49
+ """Attempt to add tokens to the tokenizer.
50
+
51
+ Args:
52
+ tokens (Union[str, List[str]]): The tokens to be added.
53
+ """
54
+ num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
55
+ assert num_added_tokens != 0, (
56
+ f"The tokenizer already contains the token {tokens}. Please pass "
57
+ "a different `placeholder_token` that is not already in the "
58
+ "tokenizer."
59
+ )
60
+
61
+ def get_token_info(self, token: str) -> dict:
62
+ """Get the information of a token, including its start and end index in
63
+ the current tokenizer.
64
+
65
+ Args:
66
+ token (str): The token to be queried.
67
+
68
+ Returns:
69
+ dict: The information of the token, including its start and end
70
+ index in current tokenizer.
71
+ """
72
+ token_ids = self.__call__(token).input_ids
73
+ start, end = token_ids[1], token_ids[-2] + 1
74
+ return {"name": token, "start": start, "end": end}
75
+
76
+ def add_placeholder_token(self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs):
77
+ """Add placeholder tokens to the tokenizer.
78
+
79
+ Args:
80
+ placeholder_token (str): The placeholder token to be added.
81
+ num_vec_per_token (int, optional): The number of vectors of
82
+ the added placeholder token.
83
+ *args, **kwargs: The arguments for `self.wrapped.add_tokens`.
84
+ """
85
+ output = []
86
+ if num_vec_per_token == 1:
87
+ self.try_adding_tokens(placeholder_token, *args, **kwargs)
88
+ output.append(placeholder_token)
89
+ else:
90
+ output = []
91
+ for i in range(num_vec_per_token):
92
+ ith_token = placeholder_token + f"_{i}"
93
+ self.try_adding_tokens(ith_token, *args, **kwargs)
94
+ output.append(ith_token)
95
+
96
+ for token in self.token_map:
97
+ if token in placeholder_token:
98
+ raise ValueError(
99
+ f"The tokenizer already has placeholder token {token} "
100
+ f"that can get confused with {placeholder_token} "
101
+ "keep placeholder tokens independent"
102
+ )
103
+ self.token_map[placeholder_token] = output
104
+
105
+ def replace_placeholder_tokens_in_text(
106
+ self, text: Union[str, List[str]], vector_shuffle: bool = False, prop_tokens_to_load: float = 1.0
107
+ ) -> Union[str, List[str]]:
108
+ """Replace the keywords in text with placeholder tokens. This function
109
+ will be called in `self.__call__` and `self.encode`.
110
+
111
+ Args:
112
+ text (Union[str, List[str]]): The text to be processed.
113
+ vector_shuffle (bool, optional): Whether to shuffle the vectors.
114
+ Defaults to False.
115
+ prop_tokens_to_load (float, optional): The proportion of tokens to
116
+ be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.
117
+
118
+ Returns:
119
+ Union[str, List[str]]: The processed text.
120
+ """
121
+ if isinstance(text, list):
122
+ output = []
123
+ for i in range(len(text)):
124
+ output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle))
125
+ return output
126
+
127
+ for placeholder_token in self.token_map:
128
+ if placeholder_token in text:
129
+ tokens = self.token_map[placeholder_token]
130
+ tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
131
+ if vector_shuffle:
132
+ tokens = copy.copy(tokens)
133
+ random.shuffle(tokens)
134
+ text = text.replace(placeholder_token, " ".join(tokens))
135
+ return text
136
+
137
+ def replace_text_with_placeholder_tokens(self, text: Union[str, List[str]]) -> Union[str, List[str]]:
138
+ """Replace the placeholder tokens in text with the original keywords.
139
+ This function will be called in `self.decode`.
140
+
141
+ Args:
142
+ text (Union[str, List[str]]): The text to be processed.
143
+
144
+ Returns:
145
+ Union[str, List[str]]: The processed text.
146
+ """
147
+ if isinstance(text, list):
148
+ output = []
149
+ for i in range(len(text)):
150
+ output.append(self.replace_text_with_placeholder_tokens(text[i]))
151
+ return output
152
+
153
+ for placeholder_token, tokens in self.token_map.items():
154
+ merged_tokens = " ".join(tokens)
155
+ if merged_tokens in text:
156
+ text = text.replace(merged_tokens, placeholder_token)
157
+ return text
158
+
159
+ def __call__(
160
+ self,
161
+ text: Union[str, List[str]],
162
+ *args,
163
+ vector_shuffle: bool = False,
164
+ prop_tokens_to_load: float = 1.0,
165
+ **kwargs,
166
+ ):
167
+ """The call function of the wrapper.
168
+
169
+ Args:
170
+ text (Union[str, List[str]]): The text to be tokenized.
171
+ vector_shuffle (bool, optional): Whether to shuffle the vectors.
172
+ Defaults to False.
173
+ prop_tokens_to_load (float, optional): The proportion of tokens to
174
+ be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0
175
+ *args, **kwargs: The arguments for `self.wrapped.__call__`.
176
+ """
177
+ replaced_text = self.replace_placeholder_tokens_in_text(
178
+ text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
179
+ )
180
+
181
+ return self.wrapped.__call__(replaced_text, *args, **kwargs)
182
+
183
+ def encode(self, text: Union[str, List[str]], *args, **kwargs):
184
+ """Encode the passed text to token index.
185
+
186
+ Args:
187
+ text (Union[str, List[str]]): The text to be encode.
188
+ *args, **kwargs: The arguments for `self.wrapped.__call__`.
189
+ """
190
+ replaced_text = self.replace_placeholder_tokens_in_text(text)
191
+ return self.wrapped(replaced_text, *args, **kwargs)
192
+
193
+ def decode(self, token_ids, return_raw: bool = False, *args, **kwargs) -> Union[str, List[str]]:
194
+ """Decode the token index to text.
195
+
196
+ Args:
197
+ token_ids: The token index to be decoded.
198
+ return_raw: Whether keep the placeholder token in the text.
199
+ Defaults to False.
200
+ *args, **kwargs: The arguments for `self.wrapped.decode`.
201
+
202
+ Returns:
203
+ Union[str, List[str]]: The decoded text.
204
+ """
205
+ text = self.wrapped.decode(token_ids, *args, **kwargs)
206
+ if return_raw:
207
+ return text
208
+ replaced_text = self.replace_text_with_placeholder_tokens(text)
209
+ return replaced_text
210
+
211
+ def __repr__(self):
212
+ """The representation of the wrapper."""
213
+ s = super().__repr__()
214
+ prefix = f"Wrapped Module Class: {self._module_cls}\n"
215
+ prefix += f"Wrapped Module Name: {self._module_name}\n"
216
+ if self._from_pretrained:
217
+ prefix += f"From Pretrained: {self._from_pretrained}\n"
218
+ s = prefix + s
219
+ return s
220
+
221
+
222
+ class EmbeddingLayerWithFixes(nn.Module):
223
+ """The revised embedding layer to support external embeddings. This design
224
+ of this class is inspired by https://github.com/AUTOMATIC1111/stable-
225
+ diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi
226
+ jack.py#L224 # noqa.
227
+
228
+ Args:
229
+ wrapped (nn.Emebdding): The embedding layer to be wrapped.
230
+ external_embeddings (Union[dict, List[dict]], optional): The external
231
+ embeddings added to this layer. Defaults to None.
232
+ """
233
+
234
+ def __init__(self, wrapped: nn.Embedding, external_embeddings: Optional[Union[dict, List[dict]]] = None):
235
+ super().__init__()
236
+ self.wrapped = wrapped
237
+ self.num_embeddings = wrapped.weight.shape[0]
238
+
239
+ self.external_embeddings = []
240
+ if external_embeddings:
241
+ self.add_embeddings(external_embeddings)
242
+
243
+ self.trainable_embeddings = nn.ParameterDict()
244
+
245
+ @property
246
+ def weight(self):
247
+ """Get the weight of wrapped embedding layer."""
248
+ return self.wrapped.weight
249
+
250
+ def check_duplicate_names(self, embeddings: List[dict]):
251
+ """Check whether duplicate names exist in list of 'external
252
+ embeddings'.
253
+
254
+ Args:
255
+ embeddings (List[dict]): A list of embedding to be check.
256
+ """
257
+ names = [emb["name"] for emb in embeddings]
258
+ assert len(names) == len(set(names)), (
259
+ "Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'"
260
+ )
261
+
262
+ def check_ids_overlap(self, embeddings):
263
+ """Check whether overlap exist in token ids of 'external_embeddings'.
264
+
265
+ Args:
266
+ embeddings (List[dict]): A list of embedding to be check.
267
+ """
268
+ ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings]
269
+ ids_range.sort() # sort by 'start'
270
+ # check if 'end' has overlapping
271
+ for idx in range(len(ids_range) - 1):
272
+ name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1]
273
+ assert ids_range[idx][1] <= ids_range[idx + 1][0], (
274
+ f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'."
275
+ )
276
+
277
+ def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]):
278
+ """Add external embeddings to this layer.
279
+
280
+ Use case:
281
+
282
+ >>> 1. Add token to tokenizer and get the token id.
283
+ >>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32')
284
+ >>> # 'how much' in kiswahili
285
+ >>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4)
286
+ >>>
287
+ >>> 2. Add external embeddings to the model.
288
+ >>> new_embedding = {
289
+ >>> 'name': 'ngapi', # 'how much' in kiswahili
290
+ >>> 'embedding': torch.ones(1, 15) * 4,
291
+ >>> 'start': tokenizer.get_token_info('kwaheri')['start'],
292
+ >>> 'end': tokenizer.get_token_info('kwaheri')['end'],
293
+ >>> 'trainable': False # if True, will registry as a parameter
294
+ >>> }
295
+ >>> embedding_layer = nn.Embedding(10, 15)
296
+ >>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer)
297
+ >>> embedding_layer_wrapper.add_embeddings(new_embedding)
298
+ >>>
299
+ >>> 3. Forward tokenizer and embedding layer!
300
+ >>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?']
301
+ >>> input_ids = tokenizer(
302
+ >>> input_text, padding='max_length', truncation=True,
303
+ >>> return_tensors='pt')['input_ids']
304
+ >>> out_feat = embedding_layer_wrapper(input_ids)
305
+ >>>
306
+ >>> 4. Let's validate the result!
307
+ >>> assert (out_feat[0, 3: 7] == 2.3).all()
308
+ >>> assert (out_feat[2, 5: 9] == 2.3).all()
309
+
310
+ Args:
311
+ embeddings (Union[dict, list[dict]]): The external embeddings to
312
+ be added. Each dict must contain the following 4 fields: 'name'
313
+ (the name of this embedding), 'embedding' (the embedding
314
+ tensor), 'start' (the start token id of this embedding), 'end'
315
+ (the end token id of this embedding). For example:
316
+ `{name: NAME, start: START, end: END, embedding: torch.Tensor}`
317
+ """
318
+ if isinstance(embeddings, dict):
319
+ embeddings = [embeddings]
320
+
321
+ self.external_embeddings += embeddings
322
+ self.check_duplicate_names(self.external_embeddings)
323
+ self.check_ids_overlap(self.external_embeddings)
324
+
325
+ # set for trainable
326
+ added_trainable_emb_info = []
327
+ for embedding in embeddings:
328
+ trainable = embedding.get("trainable", False)
329
+ if trainable:
330
+ name = embedding["name"]
331
+ embedding["embedding"] = torch.nn.Parameter(embedding["embedding"])
332
+ self.trainable_embeddings[name] = embedding["embedding"]
333
+ added_trainable_emb_info.append(name)
334
+
335
+ added_emb_info = [emb["name"] for emb in embeddings]
336
+ added_emb_info = ", ".join(added_emb_info)
337
+ print(f"Successfully add external embeddings: {added_emb_info}.", "current")
338
+
339
+ if added_trainable_emb_info:
340
+ added_trainable_emb_info = ", ".join(added_trainable_emb_info)
341
+ print("Successfully add trainable external embeddings: " f"{added_trainable_emb_info}", "current")
342
+
343
+ def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
344
+ """Replace external input ids to 0.
345
+
346
+ Args:
347
+ input_ids (torch.Tensor): The input ids to be replaced.
348
+
349
+ Returns:
350
+ torch.Tensor: The replaced input ids.
351
+ """
352
+ input_ids_fwd = input_ids.clone()
353
+ input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0
354
+ return input_ids_fwd
355
+
356
+ def replace_embeddings(
357
+ self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict
358
+ ) -> torch.Tensor:
359
+ """Replace external embedding to the embedding layer. Noted that, in
360
+ this function we use `torch.cat` to avoid inplace modification.
361
+
362
+ Args:
363
+ input_ids (torch.Tensor): The original token ids. Shape like
364
+ [LENGTH, ].
365
+ embedding (torch.Tensor): The embedding of token ids after
366
+ `replace_input_ids` function.
367
+ external_embedding (dict): The external embedding to be replaced.
368
+
369
+ Returns:
370
+ torch.Tensor: The replaced embedding.
371
+ """
372
+ new_embedding = []
373
+
374
+ name = external_embedding["name"]
375
+ start = external_embedding["start"]
376
+ end = external_embedding["end"]
377
+ target_ids_to_replace = [i for i in range(start, end)]
378
+ ext_emb = external_embedding["embedding"].to(embedding.device)
379
+
380
+ # do not need to replace
381
+ if not (input_ids == start).any():
382
+ return embedding
383
+
384
+ # start replace
385
+ s_idx, e_idx = 0, 0
386
+ while e_idx < len(input_ids):
387
+ if input_ids[e_idx] == start:
388
+ if e_idx != 0:
389
+ # add embedding do not need to replace
390
+ new_embedding.append(embedding[s_idx:e_idx])
391
+
392
+ # check if the next embedding need to replace is valid
393
+ actually_ids_to_replace = [int(i) for i in input_ids[e_idx : e_idx + end - start]]
394
+ assert actually_ids_to_replace == target_ids_to_replace, (
395
+ f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. "
396
+ f"Expect '{target_ids_to_replace}' for embedding "
397
+ f"'{name}' but found '{actually_ids_to_replace}'."
398
+ )
399
+
400
+ new_embedding.append(ext_emb)
401
+
402
+ s_idx = e_idx + end - start
403
+ e_idx = s_idx + 1
404
+ else:
405
+ e_idx += 1
406
+
407
+ if e_idx == len(input_ids):
408
+ new_embedding.append(embedding[s_idx:e_idx])
409
+
410
+ return torch.cat(new_embedding, dim=0)
411
+
412
+ def forward(self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None, out_dtype = None):
413
+ """The forward function.
414
+
415
+ Args:
416
+ input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or
417
+ [LENGTH, ].
418
+ external_embeddings (Optional[List[dict]]): The external
419
+ embeddings. If not passed, only `self.external_embeddings`
420
+ will be used. Defaults to None.
421
+
422
+ input_ids: shape like [bz, LENGTH] or [LENGTH].
423
+ """
424
+
425
+ assert input_ids.ndim in [1, 2]
426
+ if input_ids.ndim == 1:
427
+ input_ids = input_ids.unsqueeze(0)
428
+
429
+ if external_embeddings is None and not self.external_embeddings:
430
+ return self.wrapped(input_ids, out_dtype=out_dtype)
431
+
432
+ input_ids_fwd = self.replace_input_ids(input_ids)
433
+ inputs_embeds = self.wrapped(input_ids_fwd)
434
+
435
+ vecs = []
436
+
437
+ if external_embeddings is None:
438
+ external_embeddings = []
439
+ elif isinstance(external_embeddings, dict):
440
+ external_embeddings = [external_embeddings]
441
+ embeddings = self.external_embeddings + external_embeddings
442
+
443
+ for input_id, embedding in zip(input_ids, inputs_embeds):
444
+ new_embedding = embedding
445
+ for external_embedding in embeddings:
446
+ new_embedding = self.replace_embeddings(input_id, new_embedding, external_embedding)
447
+ vecs.append(new_embedding)
448
+
449
+ return torch.stack(vecs).to(out_dtype)
450
+
451
+
452
+
453
+ def add_tokens(
454
+ tokenizer, text_encoder, placeholder_tokens: list, initialize_tokens: list = None, num_vectors_per_token: int = 1
455
+ ):
456
+ """Add token for training.
457
+
458
+ # TODO: support add tokens as dict, then we can load pretrained tokens.
459
+ """
460
+ if initialize_tokens is not None:
461
+ assert len(initialize_tokens) == len(
462
+ placeholder_tokens
463
+ ), "placeholder_token should be the same length as initialize_token"
464
+ for ii in range(len(placeholder_tokens)):
465
+ tokenizer.add_placeholder_token(placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token)
466
+
467
+ # text_encoder.set_embedding_layer()
468
+ embedding_layer = text_encoder.text_model.embeddings.token_embedding
469
+ text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(embedding_layer)
470
+ embedding_layer = text_encoder.text_model.embeddings.token_embedding
471
+
472
+ assert embedding_layer is not None, (
473
+ "Do not support get embedding layer for current text encoder. " "Please check your configuration."
474
+ )
475
+ initialize_embedding = []
476
+ if initialize_tokens is not None:
477
+ for ii in range(len(placeholder_tokens)):
478
+ init_id = tokenizer(initialize_tokens[ii]).input_ids[1]
479
+ temp_embedding = embedding_layer.weight[init_id]
480
+ initialize_embedding.append(temp_embedding[None, ...].repeat(num_vectors_per_token, 1))
481
+ else:
482
+ for ii in range(len(placeholder_tokens)):
483
+ init_id = tokenizer("a").input_ids[1]
484
+ temp_embedding = embedding_layer.weight[init_id]
485
+ len_emb = temp_embedding.shape[0]
486
+ init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0
487
+ initialize_embedding.append(init_weight)
488
+
489
+ # initialize_embedding = torch.cat(initialize_embedding,dim=0)
490
+
491
+ token_info_all = []
492
+ for ii in range(len(placeholder_tokens)):
493
+ token_info = tokenizer.get_token_info(placeholder_tokens[ii])
494
+ token_info["embedding"] = initialize_embedding[ii]
495
+ token_info["trainable"] = True
496
+ token_info_all.append(token_info)
497
+ embedding_layer.add_embeddings(token_info_all)
brushnet/unet_2d_blocks.py ADDED
The diff for this file is too large to render. See raw diff
 
brushnet/unet_2d_condition.py ADDED
@@ -0,0 +1,1355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.utils.checkpoint
20
+
21
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
22
+ from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
23
+ from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
24
+ from diffusers.models.activations import get_activation
25
+ from diffusers.models.attention_processor import (
26
+ ADDED_KV_ATTENTION_PROCESSORS,
27
+ CROSS_ATTENTION_PROCESSORS,
28
+ Attention,
29
+ AttentionProcessor,
30
+ AttnAddedKVProcessor,
31
+ AttnProcessor,
32
+ )
33
+ from diffusers.models.embeddings import (
34
+ GaussianFourierProjection,
35
+ GLIGENTextBoundingboxProjection,
36
+ ImageHintTimeEmbedding,
37
+ ImageProjection,
38
+ ImageTimeEmbedding,
39
+ TextImageProjection,
40
+ TextImageTimeEmbedding,
41
+ TextTimeEmbedding,
42
+ TimestepEmbedding,
43
+ Timesteps,
44
+ )
45
+ from diffusers.models.modeling_utils import ModelMixin
46
+ from .unet_2d_blocks import (
47
+ get_down_block,
48
+ get_mid_block,
49
+ get_up_block,
50
+ )
51
+
52
+
53
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
54
+
55
+
56
+ @dataclass
57
+ class UNet2DConditionOutput(BaseOutput):
58
+ """
59
+ The output of [`UNet2DConditionModel`].
60
+
61
+ Args:
62
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
63
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
64
+ """
65
+
66
+ sample: torch.FloatTensor = None
67
+
68
+
69
+ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
70
+ r"""
71
+ A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
72
+ shaped output.
73
+
74
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
75
+ for all models (such as downloading or saving).
76
+
77
+ Parameters:
78
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
79
+ Height and width of input/output sample.
80
+ in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
81
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
82
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
83
+ flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
84
+ Whether to flip the sin to cos in the time embedding.
85
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
86
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
87
+ The tuple of downsample blocks to use.
88
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
89
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
90
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
91
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
92
+ The tuple of upsample blocks to use.
93
+ only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
94
+ Whether to include self-attention in the basic transformer blocks, see
95
+ [`~models.attention.BasicTransformerBlock`].
96
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
97
+ The tuple of output channels for each block.
98
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
99
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
100
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
101
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
102
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
103
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
104
+ If `None`, normalization and activation layers is skipped in post-processing.
105
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
106
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
107
+ The dimension of the cross attention features.
108
+ transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
109
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
110
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
111
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
112
+ reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
113
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
114
+ blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
115
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
116
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
117
+ encoder_hid_dim (`int`, *optional*, defaults to None):
118
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
119
+ dimension to `cross_attention_dim`.
120
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
121
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
122
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
123
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
124
+ num_attention_heads (`int`, *optional*):
125
+ The number of attention heads. If not defined, defaults to `attention_head_dim`
126
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
127
+ for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
128
+ class_embed_type (`str`, *optional*, defaults to `None`):
129
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
130
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
131
+ addition_embed_type (`str`, *optional*, defaults to `None`):
132
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
133
+ "text". "text" will use the `TextTimeEmbedding` layer.
134
+ addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
135
+ Dimension for the timestep embeddings.
136
+ num_class_embeds (`int`, *optional*, defaults to `None`):
137
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
138
+ class conditioning with `class_embed_type` equal to `None`.
139
+ time_embedding_type (`str`, *optional*, defaults to `positional`):
140
+ The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
141
+ time_embedding_dim (`int`, *optional*, defaults to `None`):
142
+ An optional override for the dimension of the projected time embedding.
143
+ time_embedding_act_fn (`str`, *optional*, defaults to `None`):
144
+ Optional activation function to use only once on the time embeddings before they are passed to the rest of
145
+ the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
146
+ timestep_post_act (`str`, *optional*, defaults to `None`):
147
+ The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
148
+ time_cond_proj_dim (`int`, *optional*, defaults to `None`):
149
+ The dimension of `cond_proj` layer in the timestep embedding.
150
+ conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
151
+ conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
152
+ projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
153
+ `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
154
+ class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
155
+ embeddings with the class embeddings.
156
+ mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
157
+ Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
158
+ `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
159
+ `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
160
+ otherwise.
161
+ """
162
+
163
+ _supports_gradient_checkpointing = True
164
+
165
+ @register_to_config
166
+ def __init__(
167
+ self,
168
+ sample_size: Optional[int] = None,
169
+ in_channels: int = 4,
170
+ out_channels: int = 4,
171
+ center_input_sample: bool = False,
172
+ flip_sin_to_cos: bool = True,
173
+ freq_shift: int = 0,
174
+ down_block_types: Tuple[str] = (
175
+ "CrossAttnDownBlock2D",
176
+ "CrossAttnDownBlock2D",
177
+ "CrossAttnDownBlock2D",
178
+ "DownBlock2D",
179
+ ),
180
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
181
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
182
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
183
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
184
+ layers_per_block: Union[int, Tuple[int]] = 2,
185
+ downsample_padding: int = 1,
186
+ mid_block_scale_factor: float = 1,
187
+ dropout: float = 0.0,
188
+ act_fn: str = "silu",
189
+ norm_num_groups: Optional[int] = 32,
190
+ norm_eps: float = 1e-5,
191
+ cross_attention_dim: Union[int, Tuple[int]] = 1280,
192
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
193
+ reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
194
+ encoder_hid_dim: Optional[int] = None,
195
+ encoder_hid_dim_type: Optional[str] = None,
196
+ attention_head_dim: Union[int, Tuple[int]] = 8,
197
+ num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
198
+ dual_cross_attention: bool = False,
199
+ use_linear_projection: bool = False,
200
+ class_embed_type: Optional[str] = None,
201
+ addition_embed_type: Optional[str] = None,
202
+ addition_time_embed_dim: Optional[int] = None,
203
+ num_class_embeds: Optional[int] = None,
204
+ upcast_attention: bool = False,
205
+ resnet_time_scale_shift: str = "default",
206
+ resnet_skip_time_act: bool = False,
207
+ resnet_out_scale_factor: float = 1.0,
208
+ time_embedding_type: str = "positional",
209
+ time_embedding_dim: Optional[int] = None,
210
+ time_embedding_act_fn: Optional[str] = None,
211
+ timestep_post_act: Optional[str] = None,
212
+ time_cond_proj_dim: Optional[int] = None,
213
+ conv_in_kernel: int = 3,
214
+ conv_out_kernel: int = 3,
215
+ projection_class_embeddings_input_dim: Optional[int] = None,
216
+ attention_type: str = "default",
217
+ class_embeddings_concat: bool = False,
218
+ mid_block_only_cross_attention: Optional[bool] = None,
219
+ cross_attention_norm: Optional[str] = None,
220
+ addition_embed_type_num_heads: int = 64,
221
+ ):
222
+ super().__init__()
223
+
224
+ self.sample_size = sample_size
225
+
226
+ if num_attention_heads is not None:
227
+ raise ValueError(
228
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
229
+ )
230
+
231
+ # If `num_attention_heads` is not defined (which is the case for most models)
232
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
233
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
234
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
235
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
236
+ # which is why we correct for the naming here.
237
+ num_attention_heads = num_attention_heads or attention_head_dim
238
+
239
+ # Check inputs
240
+ self._check_config(
241
+ down_block_types=down_block_types,
242
+ up_block_types=up_block_types,
243
+ only_cross_attention=only_cross_attention,
244
+ block_out_channels=block_out_channels,
245
+ layers_per_block=layers_per_block,
246
+ cross_attention_dim=cross_attention_dim,
247
+ transformer_layers_per_block=transformer_layers_per_block,
248
+ reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
249
+ attention_head_dim=attention_head_dim,
250
+ num_attention_heads=num_attention_heads,
251
+ )
252
+
253
+ # input
254
+ conv_in_padding = (conv_in_kernel - 1) // 2
255
+ self.conv_in = nn.Conv2d(
256
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
257
+ )
258
+
259
+ # time
260
+ time_embed_dim, timestep_input_dim = self._set_time_proj(
261
+ time_embedding_type,
262
+ block_out_channels=block_out_channels,
263
+ flip_sin_to_cos=flip_sin_to_cos,
264
+ freq_shift=freq_shift,
265
+ time_embedding_dim=time_embedding_dim,
266
+ )
267
+
268
+ self.time_embedding = TimestepEmbedding(
269
+ timestep_input_dim,
270
+ time_embed_dim,
271
+ act_fn=act_fn,
272
+ post_act_fn=timestep_post_act,
273
+ cond_proj_dim=time_cond_proj_dim,
274
+ )
275
+
276
+ self._set_encoder_hid_proj(
277
+ encoder_hid_dim_type,
278
+ cross_attention_dim=cross_attention_dim,
279
+ encoder_hid_dim=encoder_hid_dim,
280
+ )
281
+
282
+ # class embedding
283
+ self._set_class_embedding(
284
+ class_embed_type,
285
+ act_fn=act_fn,
286
+ num_class_embeds=num_class_embeds,
287
+ projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
288
+ time_embed_dim=time_embed_dim,
289
+ timestep_input_dim=timestep_input_dim,
290
+ )
291
+
292
+ self._set_add_embedding(
293
+ addition_embed_type,
294
+ addition_embed_type_num_heads=addition_embed_type_num_heads,
295
+ addition_time_embed_dim=addition_time_embed_dim,
296
+ cross_attention_dim=cross_attention_dim,
297
+ encoder_hid_dim=encoder_hid_dim,
298
+ flip_sin_to_cos=flip_sin_to_cos,
299
+ freq_shift=freq_shift,
300
+ projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
301
+ time_embed_dim=time_embed_dim,
302
+ )
303
+
304
+ if time_embedding_act_fn is None:
305
+ self.time_embed_act = None
306
+ else:
307
+ self.time_embed_act = get_activation(time_embedding_act_fn)
308
+
309
+ self.down_blocks = nn.ModuleList([])
310
+ self.up_blocks = nn.ModuleList([])
311
+
312
+ if isinstance(only_cross_attention, bool):
313
+ if mid_block_only_cross_attention is None:
314
+ mid_block_only_cross_attention = only_cross_attention
315
+
316
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
317
+
318
+ if mid_block_only_cross_attention is None:
319
+ mid_block_only_cross_attention = False
320
+
321
+ if isinstance(num_attention_heads, int):
322
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
323
+
324
+ if isinstance(attention_head_dim, int):
325
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
326
+
327
+ if isinstance(cross_attention_dim, int):
328
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
329
+
330
+ if isinstance(layers_per_block, int):
331
+ layers_per_block = [layers_per_block] * len(down_block_types)
332
+
333
+ if isinstance(transformer_layers_per_block, int):
334
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
335
+
336
+ if class_embeddings_concat:
337
+ # The time embeddings are concatenated with the class embeddings. The dimension of the
338
+ # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
339
+ # regular time embeddings
340
+ blocks_time_embed_dim = time_embed_dim * 2
341
+ else:
342
+ blocks_time_embed_dim = time_embed_dim
343
+
344
+ # down
345
+ output_channel = block_out_channels[0]
346
+ for i, down_block_type in enumerate(down_block_types):
347
+ input_channel = output_channel
348
+ output_channel = block_out_channels[i]
349
+ is_final_block = i == len(block_out_channels) - 1
350
+
351
+ down_block = get_down_block(
352
+ down_block_type,
353
+ num_layers=layers_per_block[i],
354
+ transformer_layers_per_block=transformer_layers_per_block[i],
355
+ in_channels=input_channel,
356
+ out_channels=output_channel,
357
+ temb_channels=blocks_time_embed_dim,
358
+ add_downsample=not is_final_block,
359
+ resnet_eps=norm_eps,
360
+ resnet_act_fn=act_fn,
361
+ resnet_groups=norm_num_groups,
362
+ cross_attention_dim=cross_attention_dim[i],
363
+ num_attention_heads=num_attention_heads[i],
364
+ downsample_padding=downsample_padding,
365
+ dual_cross_attention=dual_cross_attention,
366
+ use_linear_projection=use_linear_projection,
367
+ only_cross_attention=only_cross_attention[i],
368
+ upcast_attention=upcast_attention,
369
+ resnet_time_scale_shift=resnet_time_scale_shift,
370
+ attention_type=attention_type,
371
+ resnet_skip_time_act=resnet_skip_time_act,
372
+ resnet_out_scale_factor=resnet_out_scale_factor,
373
+ cross_attention_norm=cross_attention_norm,
374
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
375
+ dropout=dropout,
376
+ )
377
+ self.down_blocks.append(down_block)
378
+
379
+ # mid
380
+ self.mid_block = get_mid_block(
381
+ mid_block_type,
382
+ temb_channels=blocks_time_embed_dim,
383
+ in_channels=block_out_channels[-1],
384
+ resnet_eps=norm_eps,
385
+ resnet_act_fn=act_fn,
386
+ resnet_groups=norm_num_groups,
387
+ output_scale_factor=mid_block_scale_factor,
388
+ transformer_layers_per_block=transformer_layers_per_block[-1],
389
+ num_attention_heads=num_attention_heads[-1],
390
+ cross_attention_dim=cross_attention_dim[-1],
391
+ dual_cross_attention=dual_cross_attention,
392
+ use_linear_projection=use_linear_projection,
393
+ mid_block_only_cross_attention=mid_block_only_cross_attention,
394
+ upcast_attention=upcast_attention,
395
+ resnet_time_scale_shift=resnet_time_scale_shift,
396
+ attention_type=attention_type,
397
+ resnet_skip_time_act=resnet_skip_time_act,
398
+ cross_attention_norm=cross_attention_norm,
399
+ attention_head_dim=attention_head_dim[-1],
400
+ dropout=dropout,
401
+ )
402
+
403
+ # count how many layers upsample the images
404
+ self.num_upsamplers = 0
405
+
406
+ # up
407
+ reversed_block_out_channels = list(reversed(block_out_channels))
408
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
409
+ reversed_layers_per_block = list(reversed(layers_per_block))
410
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
411
+ reversed_transformer_layers_per_block = (
412
+ list(reversed(transformer_layers_per_block))
413
+ if reverse_transformer_layers_per_block is None
414
+ else reverse_transformer_layers_per_block
415
+ )
416
+ only_cross_attention = list(reversed(only_cross_attention))
417
+
418
+ output_channel = reversed_block_out_channels[0]
419
+ for i, up_block_type in enumerate(up_block_types):
420
+ is_final_block = i == len(block_out_channels) - 1
421
+
422
+ prev_output_channel = output_channel
423
+ output_channel = reversed_block_out_channels[i]
424
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
425
+
426
+ # add upsample block for all BUT final layer
427
+ if not is_final_block:
428
+ add_upsample = True
429
+ self.num_upsamplers += 1
430
+ else:
431
+ add_upsample = False
432
+
433
+ up_block = get_up_block(
434
+ up_block_type,
435
+ num_layers=reversed_layers_per_block[i] + 1,
436
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
437
+ in_channels=input_channel,
438
+ out_channels=output_channel,
439
+ prev_output_channel=prev_output_channel,
440
+ temb_channels=blocks_time_embed_dim,
441
+ add_upsample=add_upsample,
442
+ resnet_eps=norm_eps,
443
+ resnet_act_fn=act_fn,
444
+ resolution_idx=i,
445
+ resnet_groups=norm_num_groups,
446
+ cross_attention_dim=reversed_cross_attention_dim[i],
447
+ num_attention_heads=reversed_num_attention_heads[i],
448
+ dual_cross_attention=dual_cross_attention,
449
+ use_linear_projection=use_linear_projection,
450
+ only_cross_attention=only_cross_attention[i],
451
+ upcast_attention=upcast_attention,
452
+ resnet_time_scale_shift=resnet_time_scale_shift,
453
+ attention_type=attention_type,
454
+ resnet_skip_time_act=resnet_skip_time_act,
455
+ resnet_out_scale_factor=resnet_out_scale_factor,
456
+ cross_attention_norm=cross_attention_norm,
457
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
458
+ dropout=dropout,
459
+ )
460
+ self.up_blocks.append(up_block)
461
+ prev_output_channel = output_channel
462
+
463
+ # out
464
+ if norm_num_groups is not None:
465
+ self.conv_norm_out = nn.GroupNorm(
466
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
467
+ )
468
+
469
+ self.conv_act = get_activation(act_fn)
470
+
471
+ else:
472
+ self.conv_norm_out = None
473
+ self.conv_act = None
474
+
475
+ conv_out_padding = (conv_out_kernel - 1) // 2
476
+ self.conv_out = nn.Conv2d(
477
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
478
+ )
479
+
480
+ self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
481
+
482
+ def _check_config(
483
+ self,
484
+ down_block_types: Tuple[str],
485
+ up_block_types: Tuple[str],
486
+ only_cross_attention: Union[bool, Tuple[bool]],
487
+ block_out_channels: Tuple[int],
488
+ layers_per_block: Union[int, Tuple[int]],
489
+ cross_attention_dim: Union[int, Tuple[int]],
490
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
491
+ reverse_transformer_layers_per_block: bool,
492
+ attention_head_dim: int,
493
+ num_attention_heads: Optional[Union[int, Tuple[int]]],
494
+ ):
495
+ if len(down_block_types) != len(up_block_types):
496
+ raise ValueError(
497
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
498
+ )
499
+
500
+ if len(block_out_channels) != len(down_block_types):
501
+ raise ValueError(
502
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
503
+ )
504
+
505
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
506
+ raise ValueError(
507
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
508
+ )
509
+
510
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
511
+ raise ValueError(
512
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
513
+ )
514
+
515
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
516
+ raise ValueError(
517
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
518
+ )
519
+
520
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
521
+ raise ValueError(
522
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
523
+ )
524
+
525
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
526
+ raise ValueError(
527
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
528
+ )
529
+ if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
530
+ for layer_number_per_block in transformer_layers_per_block:
531
+ if isinstance(layer_number_per_block, list):
532
+ raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
533
+
534
+ def _set_time_proj(
535
+ self,
536
+ time_embedding_type: str,
537
+ block_out_channels: int,
538
+ flip_sin_to_cos: bool,
539
+ freq_shift: float,
540
+ time_embedding_dim: int,
541
+ ) -> Tuple[int, int]:
542
+ if time_embedding_type == "fourier":
543
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
544
+ if time_embed_dim % 2 != 0:
545
+ raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
546
+ self.time_proj = GaussianFourierProjection(
547
+ time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
548
+ )
549
+ timestep_input_dim = time_embed_dim
550
+ elif time_embedding_type == "positional":
551
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
552
+
553
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
554
+ timestep_input_dim = block_out_channels[0]
555
+ else:
556
+ raise ValueError(
557
+ f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
558
+ )
559
+
560
+ return time_embed_dim, timestep_input_dim
561
+
562
+ def _set_encoder_hid_proj(
563
+ self,
564
+ encoder_hid_dim_type: Optional[str],
565
+ cross_attention_dim: Union[int, Tuple[int]],
566
+ encoder_hid_dim: Optional[int],
567
+ ):
568
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
569
+ encoder_hid_dim_type = "text_proj"
570
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
571
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
572
+
573
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
574
+ raise ValueError(
575
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
576
+ )
577
+
578
+ if encoder_hid_dim_type == "text_proj":
579
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
580
+ elif encoder_hid_dim_type == "text_image_proj":
581
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
582
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
583
+ # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
584
+ self.encoder_hid_proj = TextImageProjection(
585
+ text_embed_dim=encoder_hid_dim,
586
+ image_embed_dim=cross_attention_dim,
587
+ cross_attention_dim=cross_attention_dim,
588
+ )
589
+ elif encoder_hid_dim_type == "image_proj":
590
+ # Kandinsky 2.2
591
+ self.encoder_hid_proj = ImageProjection(
592
+ image_embed_dim=encoder_hid_dim,
593
+ cross_attention_dim=cross_attention_dim,
594
+ )
595
+ elif encoder_hid_dim_type is not None:
596
+ raise ValueError(
597
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
598
+ )
599
+ else:
600
+ self.encoder_hid_proj = None
601
+
602
+ def _set_class_embedding(
603
+ self,
604
+ class_embed_type: Optional[str],
605
+ act_fn: str,
606
+ num_class_embeds: Optional[int],
607
+ projection_class_embeddings_input_dim: Optional[int],
608
+ time_embed_dim: int,
609
+ timestep_input_dim: int,
610
+ ):
611
+ if class_embed_type is None and num_class_embeds is not None:
612
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
613
+ elif class_embed_type == "timestep":
614
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
615
+ elif class_embed_type == "identity":
616
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
617
+ elif class_embed_type == "projection":
618
+ if projection_class_embeddings_input_dim is None:
619
+ raise ValueError(
620
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
621
+ )
622
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
623
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
624
+ # 2. it projects from an arbitrary input dimension.
625
+ #
626
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
627
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
628
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
629
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
630
+ elif class_embed_type == "simple_projection":
631
+ if projection_class_embeddings_input_dim is None:
632
+ raise ValueError(
633
+ "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
634
+ )
635
+ self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
636
+ else:
637
+ self.class_embedding = None
638
+
639
+ def _set_add_embedding(
640
+ self,
641
+ addition_embed_type: str,
642
+ addition_embed_type_num_heads: int,
643
+ addition_time_embed_dim: Optional[int],
644
+ flip_sin_to_cos: bool,
645
+ freq_shift: float,
646
+ cross_attention_dim: Optional[int],
647
+ encoder_hid_dim: Optional[int],
648
+ projection_class_embeddings_input_dim: Optional[int],
649
+ time_embed_dim: int,
650
+ ):
651
+ if addition_embed_type == "text":
652
+ if encoder_hid_dim is not None:
653
+ text_time_embedding_from_dim = encoder_hid_dim
654
+ else:
655
+ text_time_embedding_from_dim = cross_attention_dim
656
+
657
+ self.add_embedding = TextTimeEmbedding(
658
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
659
+ )
660
+ elif addition_embed_type == "text_image":
661
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
662
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
663
+ # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
664
+ self.add_embedding = TextImageTimeEmbedding(
665
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
666
+ )
667
+ elif addition_embed_type == "text_time":
668
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
669
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
670
+ elif addition_embed_type == "image":
671
+ # Kandinsky 2.2
672
+ self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
673
+ elif addition_embed_type == "image_hint":
674
+ # Kandinsky 2.2 ControlNet
675
+ self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
676
+ elif addition_embed_type is not None:
677
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
678
+
679
+ def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
680
+ if attention_type in ["gated", "gated-text-image"]:
681
+ positive_len = 768
682
+ if isinstance(cross_attention_dim, int):
683
+ positive_len = cross_attention_dim
684
+ elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
685
+ positive_len = cross_attention_dim[0]
686
+
687
+ feature_type = "text-only" if attention_type == "gated" else "text-image"
688
+ self.position_net = GLIGENTextBoundingboxProjection(
689
+ positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
690
+ )
691
+
692
+ @property
693
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
694
+ r"""
695
+ Returns:
696
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
697
+ indexed by its weight name.
698
+ """
699
+ # set recursively
700
+ processors = {}
701
+
702
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
703
+ if hasattr(module, "get_processor"):
704
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
705
+
706
+ for sub_name, child in module.named_children():
707
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
708
+
709
+ return processors
710
+
711
+ for name, module in self.named_children():
712
+ fn_recursive_add_processors(name, module, processors)
713
+
714
+ return processors
715
+
716
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
717
+ r"""
718
+ Sets the attention processor to use to compute attention.
719
+
720
+ Parameters:
721
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
722
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
723
+ for **all** `Attention` layers.
724
+
725
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
726
+ processor. This is strongly recommended when setting trainable attention processors.
727
+
728
+ """
729
+ count = len(self.attn_processors.keys())
730
+
731
+ if isinstance(processor, dict) and len(processor) != count:
732
+ raise ValueError(
733
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
734
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
735
+ )
736
+
737
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
738
+ if hasattr(module, "set_processor"):
739
+ if not isinstance(processor, dict):
740
+ module.set_processor(processor)
741
+ else:
742
+ module.set_processor(processor.pop(f"{name}.processor"))
743
+
744
+ for sub_name, child in module.named_children():
745
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
746
+
747
+ for name, module in self.named_children():
748
+ fn_recursive_attn_processor(name, module, processor)
749
+
750
+ def set_default_attn_processor(self):
751
+ """
752
+ Disables custom attention processors and sets the default attention implementation.
753
+ """
754
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
755
+ processor = AttnAddedKVProcessor()
756
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
757
+ processor = AttnProcessor()
758
+ else:
759
+ raise ValueError(
760
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
761
+ )
762
+
763
+ self.set_attn_processor(processor)
764
+
765
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
766
+ r"""
767
+ Enable sliced attention computation.
768
+
769
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
770
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
771
+
772
+ Args:
773
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
774
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
775
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
776
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
777
+ must be a multiple of `slice_size`.
778
+ """
779
+ sliceable_head_dims = []
780
+
781
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
782
+ if hasattr(module, "set_attention_slice"):
783
+ sliceable_head_dims.append(module.sliceable_head_dim)
784
+
785
+ for child in module.children():
786
+ fn_recursive_retrieve_sliceable_dims(child)
787
+
788
+ # retrieve number of attention layers
789
+ for module in self.children():
790
+ fn_recursive_retrieve_sliceable_dims(module)
791
+
792
+ num_sliceable_layers = len(sliceable_head_dims)
793
+
794
+ if slice_size == "auto":
795
+ # half the attention head size is usually a good trade-off between
796
+ # speed and memory
797
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
798
+ elif slice_size == "max":
799
+ # make smallest slice possible
800
+ slice_size = num_sliceable_layers * [1]
801
+
802
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
803
+
804
+ if len(slice_size) != len(sliceable_head_dims):
805
+ raise ValueError(
806
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
807
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
808
+ )
809
+
810
+ for i in range(len(slice_size)):
811
+ size = slice_size[i]
812
+ dim = sliceable_head_dims[i]
813
+ if size is not None and size > dim:
814
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
815
+
816
+ # Recursively walk through all the children.
817
+ # Any children which exposes the set_attention_slice method
818
+ # gets the message
819
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
820
+ if hasattr(module, "set_attention_slice"):
821
+ module.set_attention_slice(slice_size.pop())
822
+
823
+ for child in module.children():
824
+ fn_recursive_set_attention_slice(child, slice_size)
825
+
826
+ reversed_slice_size = list(reversed(slice_size))
827
+ for module in self.children():
828
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
829
+
830
+ def _set_gradient_checkpointing(self, module, value=False):
831
+ if hasattr(module, "gradient_checkpointing"):
832
+ module.gradient_checkpointing = value
833
+
834
+ def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
835
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
836
+
837
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
838
+
839
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
840
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
841
+
842
+ Args:
843
+ s1 (`float`):
844
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
845
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
846
+ s2 (`float`):
847
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
848
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
849
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
850
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
851
+ """
852
+ for i, upsample_block in enumerate(self.up_blocks):
853
+ setattr(upsample_block, "s1", s1)
854
+ setattr(upsample_block, "s2", s2)
855
+ setattr(upsample_block, "b1", b1)
856
+ setattr(upsample_block, "b2", b2)
857
+
858
+ def disable_freeu(self):
859
+ """Disables the FreeU mechanism."""
860
+ freeu_keys = {"s1", "s2", "b1", "b2"}
861
+ for i, upsample_block in enumerate(self.up_blocks):
862
+ for k in freeu_keys:
863
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
864
+ setattr(upsample_block, k, None)
865
+
866
+ def fuse_qkv_projections(self):
867
+ """
868
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
869
+ are fused. For cross-attention modules, key and value projection matrices are fused.
870
+
871
+ <Tip warning={true}>
872
+
873
+ This API is 🧪 experimental.
874
+
875
+ </Tip>
876
+ """
877
+ self.original_attn_processors = None
878
+
879
+ for _, attn_processor in self.attn_processors.items():
880
+ if "Added" in str(attn_processor.__class__.__name__):
881
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
882
+
883
+ self.original_attn_processors = self.attn_processors
884
+
885
+ for module in self.modules():
886
+ if isinstance(module, Attention):
887
+ module.fuse_projections(fuse=True)
888
+
889
+ def unfuse_qkv_projections(self):
890
+ """Disables the fused QKV projection if enabled.
891
+
892
+ <Tip warning={true}>
893
+
894
+ This API is 🧪 experimental.
895
+
896
+ </Tip>
897
+
898
+ """
899
+ if self.original_attn_processors is not None:
900
+ self.set_attn_processor(self.original_attn_processors)
901
+
902
+ def unload_lora(self):
903
+ """Unloads LoRA weights."""
904
+ deprecate(
905
+ "unload_lora",
906
+ "0.28.0",
907
+ "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
908
+ )
909
+ for module in self.modules():
910
+ if hasattr(module, "set_lora_layer"):
911
+ module.set_lora_layer(None)
912
+
913
+ def get_time_embed(
914
+ self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
915
+ ) -> Optional[torch.Tensor]:
916
+ timesteps = timestep
917
+ if not torch.is_tensor(timesteps):
918
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
919
+ # This would be a good case for the `match` statement (Python 3.10+)
920
+ is_mps = sample.device.type == "mps"
921
+ if isinstance(timestep, float):
922
+ dtype = torch.float32 if is_mps else torch.float64
923
+ else:
924
+ dtype = torch.int32 if is_mps else torch.int64
925
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
926
+ elif len(timesteps.shape) == 0:
927
+ timesteps = timesteps[None].to(sample.device)
928
+
929
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
930
+ timesteps = timesteps.expand(sample.shape[0])
931
+
932
+ t_emb = self.time_proj(timesteps)
933
+ # `Timesteps` does not contain any weights and will always return f32 tensors
934
+ # but time_embedding might actually be running in fp16. so we need to cast here.
935
+ # there might be better ways to encapsulate this.
936
+ t_emb = t_emb.to(dtype=sample.dtype)
937
+ return t_emb
938
+
939
+ def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
940
+ class_emb = None
941
+ if self.class_embedding is not None:
942
+ if class_labels is None:
943
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
944
+
945
+ if self.config.class_embed_type == "timestep":
946
+ class_labels = self.time_proj(class_labels)
947
+
948
+ # `Timesteps` does not contain any weights and will always return f32 tensors
949
+ # there might be better ways to encapsulate this.
950
+ class_labels = class_labels.to(dtype=sample.dtype)
951
+
952
+ class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
953
+ return class_emb
954
+
955
+ def get_aug_embed(
956
+ self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
957
+ ) -> Optional[torch.Tensor]:
958
+ aug_emb = None
959
+ if self.config.addition_embed_type == "text":
960
+ aug_emb = self.add_embedding(encoder_hidden_states)
961
+ elif self.config.addition_embed_type == "text_image":
962
+ # Kandinsky 2.1 - style
963
+ if "image_embeds" not in added_cond_kwargs:
964
+ raise ValueError(
965
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
966
+ )
967
+
968
+ image_embs = added_cond_kwargs.get("image_embeds")
969
+ text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
970
+ aug_emb = self.add_embedding(text_embs, image_embs)
971
+ elif self.config.addition_embed_type == "text_time":
972
+ # SDXL - style
973
+ if "text_embeds" not in added_cond_kwargs:
974
+ raise ValueError(
975
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
976
+ )
977
+ text_embeds = added_cond_kwargs.get("text_embeds")
978
+ if "time_ids" not in added_cond_kwargs:
979
+ raise ValueError(
980
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
981
+ )
982
+ time_ids = added_cond_kwargs.get("time_ids")
983
+ time_embeds = self.add_time_proj(time_ids.flatten())
984
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
985
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
986
+ add_embeds = add_embeds.to(emb.dtype)
987
+ aug_emb = self.add_embedding(add_embeds)
988
+ elif self.config.addition_embed_type == "image":
989
+ # Kandinsky 2.2 - style
990
+ if "image_embeds" not in added_cond_kwargs:
991
+ raise ValueError(
992
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
993
+ )
994
+ image_embs = added_cond_kwargs.get("image_embeds")
995
+ aug_emb = self.add_embedding(image_embs)
996
+ elif self.config.addition_embed_type == "image_hint":
997
+ # Kandinsky 2.2 - style
998
+ if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
999
+ raise ValueError(
1000
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
1001
+ )
1002
+ image_embs = added_cond_kwargs.get("image_embeds")
1003
+ hint = added_cond_kwargs.get("hint")
1004
+ aug_emb = self.add_embedding(image_embs, hint)
1005
+ return aug_emb
1006
+
1007
+ def process_encoder_hidden_states(
1008
+ self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
1009
+ ) -> torch.Tensor:
1010
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
1011
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
1012
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
1013
+ # Kandinsky 2.1 - style
1014
+ if "image_embeds" not in added_cond_kwargs:
1015
+ raise ValueError(
1016
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1017
+ )
1018
+
1019
+ image_embeds = added_cond_kwargs.get("image_embeds")
1020
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
1021
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
1022
+ # Kandinsky 2.2 - style
1023
+ if "image_embeds" not in added_cond_kwargs:
1024
+ raise ValueError(
1025
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1026
+ )
1027
+ image_embeds = added_cond_kwargs.get("image_embeds")
1028
+ encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1029
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
1030
+ if "image_embeds" not in added_cond_kwargs:
1031
+ raise ValueError(
1032
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1033
+ )
1034
+ image_embeds = added_cond_kwargs.get("image_embeds")
1035
+ image_embeds = self.encoder_hid_proj(image_embeds)
1036
+ encoder_hidden_states = (encoder_hidden_states, image_embeds)
1037
+ return encoder_hidden_states
1038
+
1039
+ def forward(
1040
+ self,
1041
+ sample: torch.FloatTensor,
1042
+ timestep: Union[torch.Tensor, float, int],
1043
+ encoder_hidden_states: torch.Tensor,
1044
+ class_labels: Optional[torch.Tensor] = None,
1045
+ timestep_cond: Optional[torch.Tensor] = None,
1046
+ attention_mask: Optional[torch.Tensor] = None,
1047
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1048
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
1049
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
1050
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
1051
+ down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
1052
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1053
+ return_dict: bool = True,
1054
+ down_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
1055
+ mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None,
1056
+ up_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
1057
+ ) -> Union[UNet2DConditionOutput, Tuple]:
1058
+ r"""
1059
+ The [`UNet2DConditionModel`] forward method.
1060
+
1061
+ Args:
1062
+ sample (`torch.FloatTensor`):
1063
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
1064
+ timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
1065
+ encoder_hidden_states (`torch.FloatTensor`):
1066
+ The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
1067
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
1068
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
1069
+ timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
1070
+ Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
1071
+ through the `self.time_embedding` layer to obtain the timestep embeddings.
1072
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
1073
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
1074
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
1075
+ negative values to the attention scores corresponding to "discard" tokens.
1076
+ cross_attention_kwargs (`dict`, *optional*):
1077
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1078
+ `self.processor` in
1079
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1080
+ added_cond_kwargs: (`dict`, *optional*):
1081
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
1082
+ are passed along to the UNet blocks.
1083
+ down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
1084
+ A tuple of tensors that if specified are added to the residuals of down unet blocks.
1085
+ mid_block_additional_residual: (`torch.Tensor`, *optional*):
1086
+ A tensor that if specified is added to the residual of the middle unet block.
1087
+ down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
1088
+ additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
1089
+ encoder_attention_mask (`torch.Tensor`):
1090
+ A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
1091
+ `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
1092
+ which adds large negative values to the attention scores corresponding to "discard" tokens.
1093
+ return_dict (`bool`, *optional*, defaults to `True`):
1094
+ Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
1095
+ tuple.
1096
+
1097
+ Returns:
1098
+ [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
1099
+ If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
1100
+ otherwise a `tuple` is returned where the first element is the sample tensor.
1101
+ """
1102
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
1103
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
1104
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
1105
+ # on the fly if necessary.
1106
+ default_overall_up_factor = 2**self.num_upsamplers
1107
+
1108
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
1109
+ forward_upsample_size = False
1110
+ upsample_size = None
1111
+
1112
+ for dim in sample.shape[-2:]:
1113
+ if dim % default_overall_up_factor != 0:
1114
+ # Forward upsample size to force interpolation output size.
1115
+ forward_upsample_size = True
1116
+ break
1117
+
1118
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
1119
+ # expects mask of shape:
1120
+ # [batch, key_tokens]
1121
+ # adds singleton query_tokens dimension:
1122
+ # [batch, 1, key_tokens]
1123
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
1124
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
1125
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
1126
+ if attention_mask is not None:
1127
+ # assume that mask is expressed as:
1128
+ # (1 = keep, 0 = discard)
1129
+ # convert mask into a bias that can be added to attention scores:
1130
+ # (keep = +0, discard = -10000.0)
1131
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
1132
+ attention_mask = attention_mask.unsqueeze(1)
1133
+
1134
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
1135
+ if encoder_attention_mask is not None:
1136
+ encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
1137
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
1138
+
1139
+ # 0. center input if necessary
1140
+ if self.config.center_input_sample:
1141
+ sample = 2 * sample - 1.0
1142
+
1143
+ # 1. time
1144
+ t_emb = self.get_time_embed(sample=sample, timestep=timestep)
1145
+ emb = self.time_embedding(t_emb, timestep_cond)
1146
+ aug_emb = None
1147
+
1148
+ class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
1149
+ if class_emb is not None:
1150
+ if self.config.class_embeddings_concat:
1151
+ emb = torch.cat([emb, class_emb], dim=-1)
1152
+ else:
1153
+ emb = emb + class_emb
1154
+
1155
+ aug_emb = self.get_aug_embed(
1156
+ emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
1157
+ )
1158
+ if self.config.addition_embed_type == "image_hint":
1159
+ aug_emb, hint = aug_emb
1160
+ sample = torch.cat([sample, hint], dim=1)
1161
+
1162
+ emb = emb + aug_emb if aug_emb is not None else emb
1163
+
1164
+ if self.time_embed_act is not None:
1165
+ emb = self.time_embed_act(emb)
1166
+
1167
+ encoder_hidden_states = self.process_encoder_hidden_states(
1168
+ encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
1169
+ )
1170
+
1171
+ # 2. pre-process
1172
+ sample = self.conv_in(sample)
1173
+
1174
+ # 2.5 GLIGEN position net
1175
+ if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
1176
+ cross_attention_kwargs = cross_attention_kwargs.copy()
1177
+ gligen_args = cross_attention_kwargs.pop("gligen")
1178
+ cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
1179
+
1180
+ # 3. down
1181
+ # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
1182
+ # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
1183
+ if cross_attention_kwargs is not None:
1184
+ cross_attention_kwargs = cross_attention_kwargs.copy()
1185
+ lora_scale = cross_attention_kwargs.pop("scale", 1.0)
1186
+ else:
1187
+ lora_scale = 1.0
1188
+
1189
+ if USE_PEFT_BACKEND:
1190
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
1191
+ scale_lora_layers(self, lora_scale)
1192
+
1193
+ is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1194
+ # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
1195
+ is_adapter = down_intrablock_additional_residuals is not None
1196
+ # maintain backward compatibility for legacy usage, where
1197
+ # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
1198
+ # but can only use one or the other
1199
+ is_brushnet = down_block_add_samples is not None and mid_block_add_sample is not None and up_block_add_samples is not None
1200
+ if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
1201
+ deprecate(
1202
+ "T2I should not use down_block_additional_residuals",
1203
+ "1.3.0",
1204
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1205
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
1206
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
1207
+ standard_warn=False,
1208
+ )
1209
+ down_intrablock_additional_residuals = down_block_additional_residuals
1210
+ is_adapter = True
1211
+
1212
+ down_block_res_samples = (sample,)
1213
+
1214
+ if is_brushnet:
1215
+ sample = sample + down_block_add_samples.pop(0)
1216
+
1217
+ for downsample_block in self.down_blocks:
1218
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
1219
+ # For t2i-adapter CrossAttnDownBlock2D
1220
+ additional_residuals = {}
1221
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1222
+ additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
1223
+
1224
+ i = len(down_block_add_samples)
1225
+
1226
+ if is_brushnet and len(down_block_add_samples)>0:
1227
+ additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0)
1228
+ for _ in range(len(downsample_block.resnets)+(downsample_block.downsamplers !=None))]
1229
+
1230
+ sample, res_samples = downsample_block(
1231
+ hidden_states=sample,
1232
+ temb=emb,
1233
+ encoder_hidden_states=encoder_hidden_states,
1234
+ attention_mask=attention_mask,
1235
+ cross_attention_kwargs=cross_attention_kwargs,
1236
+ encoder_attention_mask=encoder_attention_mask,
1237
+ **additional_residuals,
1238
+ )
1239
+ else:
1240
+ additional_residuals = {}
1241
+
1242
+ i = len(down_block_add_samples)
1243
+
1244
+ if is_brushnet and len(down_block_add_samples)>0:
1245
+ additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0)
1246
+ for _ in range(len(downsample_block.resnets)+(downsample_block.downsamplers !=None))]
1247
+
1248
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, **additional_residuals)
1249
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1250
+ sample += down_intrablock_additional_residuals.pop(0)
1251
+
1252
+ down_block_res_samples += res_samples
1253
+
1254
+ if is_controlnet:
1255
+ new_down_block_res_samples = ()
1256
+
1257
+ for down_block_res_sample, down_block_additional_residual in zip(
1258
+ down_block_res_samples, down_block_additional_residuals
1259
+ ):
1260
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
1261
+ new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1262
+
1263
+ down_block_res_samples = new_down_block_res_samples
1264
+
1265
+ # 4. mid
1266
+ if self.mid_block is not None:
1267
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
1268
+ sample = self.mid_block(
1269
+ sample,
1270
+ emb,
1271
+ encoder_hidden_states=encoder_hidden_states,
1272
+ attention_mask=attention_mask,
1273
+ cross_attention_kwargs=cross_attention_kwargs,
1274
+ encoder_attention_mask=encoder_attention_mask,
1275
+ )
1276
+ else:
1277
+ sample = self.mid_block(sample, emb)
1278
+
1279
+ # To support T2I-Adapter-XL
1280
+ if (
1281
+ is_adapter
1282
+ and len(down_intrablock_additional_residuals) > 0
1283
+ and sample.shape == down_intrablock_additional_residuals[0].shape
1284
+ ):
1285
+ sample += down_intrablock_additional_residuals.pop(0)
1286
+
1287
+ if is_controlnet:
1288
+ sample = sample + mid_block_additional_residual
1289
+
1290
+ if is_brushnet:
1291
+ sample = sample + mid_block_add_sample
1292
+
1293
+ # 5. up
1294
+ for i, upsample_block in enumerate(self.up_blocks):
1295
+ is_final_block = i == len(self.up_blocks) - 1
1296
+
1297
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
1298
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
1299
+
1300
+ # if we have not reached the final block and need to forward the
1301
+ # upsample size, we do it here
1302
+ if not is_final_block and forward_upsample_size:
1303
+ upsample_size = down_block_res_samples[-1].shape[2:]
1304
+
1305
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1306
+ additional_residuals = {}
1307
+
1308
+ i = len(up_block_add_samples)
1309
+
1310
+ if is_brushnet and len(up_block_add_samples)>0:
1311
+ additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0)
1312
+ for _ in range(len(upsample_block.resnets)+(upsample_block.upsamplers !=None))]
1313
+
1314
+ sample = upsample_block(
1315
+ hidden_states=sample,
1316
+ temb=emb,
1317
+ res_hidden_states_tuple=res_samples,
1318
+ encoder_hidden_states=encoder_hidden_states,
1319
+ cross_attention_kwargs=cross_attention_kwargs,
1320
+ upsample_size=upsample_size,
1321
+ attention_mask=attention_mask,
1322
+ encoder_attention_mask=encoder_attention_mask,
1323
+ **additional_residuals,
1324
+ )
1325
+ else:
1326
+ additional_residuals = {}
1327
+
1328
+ i = len(up_block_add_samples)
1329
+
1330
+ if is_brushnet and len(up_block_add_samples)>0:
1331
+ additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0)
1332
+ for _ in range(len(upsample_block.resnets)+(upsample_block.upsamplers !=None))]
1333
+
1334
+ sample = upsample_block(
1335
+ hidden_states=sample,
1336
+ temb=emb,
1337
+ res_hidden_states_tuple=res_samples,
1338
+ upsample_size=upsample_size,
1339
+ **additional_residuals,
1340
+ )
1341
+
1342
+ # 6. post-process
1343
+ if self.conv_norm_out:
1344
+ sample = self.conv_norm_out(sample)
1345
+ sample = self.conv_act(sample)
1346
+ sample = self.conv_out(sample)
1347
+
1348
+ if USE_PEFT_BACKEND:
1349
+ # remove `lora_scale` from each PEFT layer
1350
+ unscale_lora_layers(self, lora_scale)
1351
+
1352
+ if not return_dict:
1353
+ return (sample,)
1354
+
1355
+ return UNet2DConditionOutput(sample=sample)
brushnet_nodes.py ADDED
@@ -0,0 +1,1085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import types
3
+ from typing import Tuple
4
+
5
+ import torch
6
+ import torchvision.transforms as T
7
+ import torch.nn.functional as F
8
+ from accelerate import init_empty_weights, load_checkpoint_and_dispatch
9
+
10
+ import comfy
11
+ import folder_paths
12
+
13
+ from .model_patch import add_model_patch_option, patch_model_function_wrapper
14
+
15
+ from .brushnet.brushnet import BrushNetModel
16
+ from .brushnet.brushnet_ca import BrushNetModel as PowerPaintModel
17
+
18
+ from .brushnet.powerpaint_utils import TokenizerWrapper, add_tokens
19
+
20
+ current_directory = os.path.dirname(os.path.abspath(__file__))
21
+ brushnet_config_file = os.path.join(current_directory, 'brushnet', 'brushnet.json')
22
+ brushnet_xl_config_file = os.path.join(current_directory, 'brushnet', 'brushnet_xl.json')
23
+ powerpaint_config_file = os.path.join(current_directory,'brushnet', 'powerpaint.json')
24
+
25
+ sd15_scaling_factor = 0.18215
26
+ sdxl_scaling_factor = 0.13025
27
+
28
+ ModelsToUnload = [comfy.sd1_clip.SD1ClipModel,
29
+ comfy.ldm.models.autoencoder.AutoencoderKL
30
+ ]
31
+
32
+
33
+ class BrushNetLoader:
34
+
35
+ @classmethod
36
+ def INPUT_TYPES(self):
37
+ self.inpaint_files = get_files_with_extension('inpaint')
38
+ return {"required":
39
+ {
40
+ "brushnet": ([file for file in self.inpaint_files], ),
41
+ "dtype": (['float16', 'bfloat16', 'float32', 'float64'], ),
42
+ },
43
+ }
44
+
45
+ CATEGORY = "inpaint"
46
+ RETURN_TYPES = ("BRMODEL",)
47
+ RETURN_NAMES = ("brushnet",)
48
+
49
+ FUNCTION = "brushnet_loading"
50
+
51
+ def brushnet_loading(self, brushnet, dtype):
52
+ brushnet_file = os.path.join(self.inpaint_files[brushnet], brushnet)
53
+ is_SDXL = False
54
+ is_PP = False
55
+ sd = comfy.utils.load_torch_file(brushnet_file)
56
+ brushnet_down_block, brushnet_mid_block, brushnet_up_block, keys = brushnet_blocks(sd)
57
+ del sd
58
+ if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30:
59
+ is_SDXL = False
60
+ if keys == 322:
61
+ is_PP = False
62
+ print('BrushNet model type: SD1.5')
63
+ else:
64
+ is_PP = True
65
+ print('PowerPaint model type: SD1.5')
66
+ elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22:
67
+ print('BrushNet model type: Loading SDXL')
68
+ is_SDXL = True
69
+ is_PP = False
70
+ else:
71
+ raise Exception("Unknown BrushNet model")
72
+
73
+ with init_empty_weights():
74
+ if is_SDXL:
75
+ brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file)
76
+ brushnet_model = BrushNetModel.from_config(brushnet_config)
77
+ elif is_PP:
78
+ brushnet_config = PowerPaintModel.load_config(powerpaint_config_file)
79
+ brushnet_model = PowerPaintModel.from_config(brushnet_config)
80
+ else:
81
+ brushnet_config = BrushNetModel.load_config(brushnet_config_file)
82
+ brushnet_model = BrushNetModel.from_config(brushnet_config)
83
+
84
+ if is_PP:
85
+ print("PowerPaint model file:", brushnet_file)
86
+ else:
87
+ print("BrushNet model file:", brushnet_file)
88
+
89
+ if dtype == 'float16':
90
+ torch_dtype = torch.float16
91
+ elif dtype == 'bfloat16':
92
+ torch_dtype = torch.bfloat16
93
+ elif dtype == 'float32':
94
+ torch_dtype = torch.float32
95
+ else:
96
+ torch_dtype = torch.float64
97
+
98
+ brushnet_model = load_checkpoint_and_dispatch(
99
+ brushnet_model,
100
+ brushnet_file,
101
+ device_map="sequential",
102
+ max_memory=None,
103
+ offload_folder=None,
104
+ offload_state_dict=False,
105
+ dtype=torch_dtype,
106
+ force_hooks=False,
107
+ )
108
+
109
+ if is_PP:
110
+ print("PowerPaint model is loaded")
111
+ elif is_SDXL:
112
+ print("BrushNet SDXL model is loaded")
113
+ else:
114
+ print("BrushNet SD1.5 model is loaded")
115
+
116
+ return ({"brushnet": brushnet_model, "SDXL": is_SDXL, "PP": is_PP, "dtype": torch_dtype}, )
117
+
118
+
119
+ class PowerPaintCLIPLoader:
120
+
121
+ @classmethod
122
+ def INPUT_TYPES(self):
123
+ self.inpaint_files = get_files_with_extension('inpaint', ['.bin'])
124
+ self.clip_files = get_files_with_extension('clip')
125
+ return {"required":
126
+ {
127
+ "base": ([file for file in self.clip_files], ),
128
+ "powerpaint": ([file for file in self.inpaint_files], ),
129
+ },
130
+ }
131
+
132
+ CATEGORY = "inpaint"
133
+ RETURN_TYPES = ("CLIP",)
134
+ RETURN_NAMES = ("clip",)
135
+
136
+ FUNCTION = "ppclip_loading"
137
+
138
+ def ppclip_loading(self, base, powerpaint):
139
+ base_CLIP_file = os.path.join(self.clip_files[base], base)
140
+ pp_CLIP_file = os.path.join(self.inpaint_files[powerpaint], powerpaint)
141
+
142
+ pp_clip = comfy.sd.load_clip(ckpt_paths=[base_CLIP_file])
143
+
144
+ print('PowerPaint base CLIP file: ', base_CLIP_file)
145
+
146
+ pp_tokenizer = TokenizerWrapper(pp_clip.tokenizer.clip_l.tokenizer)
147
+ pp_text_encoder = pp_clip.patcher.model.clip_l.transformer
148
+
149
+ add_tokens(
150
+ tokenizer = pp_tokenizer,
151
+ text_encoder = pp_text_encoder,
152
+ placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"],
153
+ initialize_tokens = ["a", "a", "a"],
154
+ num_vectors_per_token = 10,
155
+ )
156
+
157
+ pp_text_encoder.load_state_dict(comfy.utils.load_torch_file(pp_CLIP_file), strict=False)
158
+
159
+ print('PowerPaint CLIP file: ', pp_CLIP_file)
160
+
161
+ pp_clip.tokenizer.clip_l.tokenizer = pp_tokenizer
162
+ pp_clip.patcher.model.clip_l.transformer = pp_text_encoder
163
+
164
+ return (pp_clip,)
165
+
166
+
167
+ class PowerPaint:
168
+
169
+ @classmethod
170
+ def INPUT_TYPES(s):
171
+ return {"required":
172
+ {
173
+ "model": ("MODEL",),
174
+ "vae": ("VAE", ),
175
+ "image": ("IMAGE",),
176
+ "mask": ("MASK",),
177
+ "powerpaint": ("BRMODEL", ),
178
+ "clip": ("CLIP", ),
179
+ "positive": ("CONDITIONING", ),
180
+ "negative": ("CONDITIONING", ),
181
+ "fitting" : ("FLOAT", {"default": 1.0, "min": 0.3, "max": 1.0}),
182
+ "function": (['text guided', 'shape guided', 'object removal', 'context aware', 'image outpainting'], ),
183
+ "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
184
+ "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
185
+ "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
186
+ "save_memory": (['none', 'auto', 'max'], ),
187
+ },
188
+ }
189
+
190
+ CATEGORY = "inpaint"
191
+ RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
192
+ RETURN_NAMES = ("model","positive","negative","latent",)
193
+
194
+ FUNCTION = "model_update"
195
+
196
+ def model_update(self, model, vae, image, mask, powerpaint, clip, positive, negative, fitting, function, scale, start_at, end_at, save_memory):
197
+
198
+ is_SDXL, is_PP = check_compatibilty(model, powerpaint)
199
+ if not is_PP:
200
+ raise Exception("BrushNet model was loaded, please use BrushNet node")
201
+
202
+ # Make a copy of the model so that we're not patching it everywhere in the workflow.
203
+ model = model.clone()
204
+
205
+ # prepare image and mask
206
+ # no batches for original image and mask
207
+ masked_image, mask = prepare_image(image, mask)
208
+
209
+ batch = masked_image.shape[0]
210
+ #width = masked_image.shape[2]
211
+ #height = masked_image.shape[1]
212
+
213
+ if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
214
+ scaling_factor = model.model.model_config.latent_format.scale_factor
215
+ else:
216
+ scaling_factor = sd15_scaling_factor
217
+
218
+ torch_dtype = powerpaint['dtype']
219
+
220
+ # prepare conditioning latents
221
+ conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
222
+ conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
223
+ conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
224
+
225
+ # prepare embeddings
226
+
227
+ if function == "object removal":
228
+ promptA = "P_ctxt"
229
+ promptB = "P_ctxt"
230
+ negative_promptA = "P_obj"
231
+ negative_promptB = "P_obj"
232
+ print('You should add to positive prompt: "empty scene blur"')
233
+ #positive = positive + " empty scene blur"
234
+ elif function == "context aware":
235
+ promptA = "P_ctxt"
236
+ promptB = "P_ctxt"
237
+ negative_promptA = ""
238
+ negative_promptB = ""
239
+ #positive = positive + " empty scene"
240
+ print('You should add to positive prompt: "empty scene"')
241
+ elif function == "shape guided":
242
+ promptA = "P_shape"
243
+ promptB = "P_ctxt"
244
+ negative_promptA = "P_shape"
245
+ negative_promptB = "P_ctxt"
246
+ elif function == "image outpainting":
247
+ promptA = "P_ctxt"
248
+ promptB = "P_ctxt"
249
+ negative_promptA = "P_obj"
250
+ negative_promptB = "P_obj"
251
+ #positive = positive + " empty scene"
252
+ print('You should add to positive prompt: "empty scene"')
253
+ else:
254
+ promptA = "P_obj"
255
+ promptB = "P_obj"
256
+ negative_promptA = "P_obj"
257
+ negative_promptB = "P_obj"
258
+
259
+ tokens = clip.tokenize(promptA)
260
+ prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)
261
+
262
+ tokens = clip.tokenize(negative_promptA)
263
+ negative_prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)
264
+
265
+ tokens = clip.tokenize(promptB)
266
+ prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)
267
+
268
+ tokens = clip.tokenize(negative_promptB)
269
+ negative_prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)
270
+
271
+ prompt_embeds_pp = (prompt_embedsA * fitting + (1.0 - fitting) * prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
272
+ negative_prompt_embeds_pp = (negative_prompt_embedsA * fitting + (1.0 - fitting) * negative_prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
273
+
274
+ # unload vae and CLIPs
275
+ del vae
276
+ del clip
277
+ for loaded_model in comfy.model_management.current_loaded_models:
278
+ if type(loaded_model.model.model) in ModelsToUnload:
279
+ comfy.model_management.current_loaded_models.remove(loaded_model)
280
+ loaded_model.model_unload()
281
+ del loaded_model
282
+
283
+ # apply patch to model
284
+
285
+ brushnet_conditioning_scale = scale
286
+ control_guidance_start = start_at
287
+ control_guidance_end = end_at
288
+
289
+ if save_memory != 'none':
290
+ powerpaint['brushnet'].set_attention_slice(save_memory)
291
+
292
+ add_brushnet_patch(model,
293
+ powerpaint['brushnet'],
294
+ torch_dtype,
295
+ conditioning_latents,
296
+ (brushnet_conditioning_scale, control_guidance_start, control_guidance_end),
297
+ negative_prompt_embeds_pp, prompt_embeds_pp,
298
+ None, None, None,
299
+ False)
300
+
301
+ latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=powerpaint['brushnet'].device)
302
+
303
+ return (model, positive, negative, {"samples":latent},)
304
+
305
+
306
+ class BrushNet:
307
+
308
+ @classmethod
309
+ def INPUT_TYPES(s):
310
+ return {"required":
311
+ {
312
+ "model": ("MODEL",),
313
+ "vae": ("VAE", ),
314
+ "image": ("IMAGE",),
315
+ "mask": ("MASK",),
316
+ "brushnet": ("BRMODEL", ),
317
+ "positive": ("CONDITIONING", ),
318
+ "negative": ("CONDITIONING", ),
319
+ "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
320
+ "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
321
+ "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
322
+ },
323
+ }
324
+
325
+ CATEGORY = "inpaint"
326
+ RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
327
+ RETURN_NAMES = ("model","positive","negative","latent",)
328
+
329
+ FUNCTION = "model_update"
330
+
331
+ def model_update(self, model, vae, image, mask, brushnet, positive, negative, scale, start_at, end_at):
332
+
333
+ is_SDXL, is_PP = check_compatibilty(model, brushnet)
334
+
335
+ if is_PP:
336
+ raise Exception("PowerPaint model was loaded, please use PowerPaint node")
337
+
338
+ # Make a copy of the model so that we're not patching it everywhere in the workflow.
339
+ model = model.clone()
340
+
341
+ # prepare image and mask
342
+ # no batches for original image and mask
343
+ masked_image, mask = prepare_image(image, mask)
344
+
345
+ batch = masked_image.shape[0]
346
+ width = masked_image.shape[2]
347
+ height = masked_image.shape[1]
348
+
349
+ if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
350
+ scaling_factor = model.model.model_config.latent_format.scale_factor
351
+ elif is_SDXL:
352
+ scaling_factor = sdxl_scaling_factor
353
+ else:
354
+ scaling_factor = sd15_scaling_factor
355
+
356
+ torch_dtype = brushnet['dtype']
357
+
358
+ # prepare conditioning latents
359
+ conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
360
+ conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
361
+ conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
362
+
363
+ # unload vae
364
+ del vae
365
+ for loaded_model in comfy.model_management.current_loaded_models:
366
+ if type(loaded_model.model.model) in ModelsToUnload:
367
+ comfy.model_management.current_loaded_models.remove(loaded_model)
368
+ loaded_model.model_unload()
369
+ del loaded_model
370
+
371
+ # prepare embeddings
372
+
373
+ prompt_embeds = positive[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
374
+ negative_prompt_embeds = negative[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
375
+
376
+ max_tokens = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
377
+ if prompt_embeds.shape[1] < max_tokens:
378
+ multiplier = max_tokens // 77 - prompt_embeds.shape[1] // 77
379
+ prompt_embeds = torch.concat([prompt_embeds] + [prompt_embeds[:,-77:,:]] * multiplier, dim=1)
380
+ print('BrushNet: negative prompt more than 75 tokens:', negative_prompt_embeds.shape, 'multiplying prompt_embeds')
381
+ if negative_prompt_embeds.shape[1] < max_tokens:
382
+ multiplier = max_tokens // 77 - negative_prompt_embeds.shape[1] // 77
383
+ negative_prompt_embeds = torch.concat([negative_prompt_embeds] + [negative_prompt_embeds[:,-77:,:]] * multiplier, dim=1)
384
+ print('BrushNet: positive prompt more than 75 tokens:', prompt_embeds.shape, 'multiplying negative_prompt_embeds')
385
+
386
+ if len(positive[0]) > 1 and 'pooled_output' in positive[0][1] and positive[0][1]['pooled_output'] is not None:
387
+ pooled_prompt_embeds = positive[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
388
+ else:
389
+ print('BrushNet: positive conditioning has not pooled_output')
390
+ if is_SDXL:
391
+ print('BrushNet will not produce correct results')
392
+ pooled_prompt_embeds = torch.empty([2, 1280], device=brushnet['brushnet'].device).to(dtype=torch_dtype)
393
+
394
+ if len(negative[0]) > 1 and 'pooled_output' in negative[0][1] and negative[0][1]['pooled_output'] is not None:
395
+ negative_pooled_prompt_embeds = negative[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
396
+ else:
397
+ print('BrushNet: negative conditioning has not pooled_output')
398
+ if is_SDXL:
399
+ print('BrushNet will not produce correct results')
400
+ negative_pooled_prompt_embeds = torch.empty([1, pooled_prompt_embeds.shape[1]], device=brushnet['brushnet'].device).to(dtype=torch_dtype)
401
+
402
+ time_ids = torch.FloatTensor([[height, width, 0., 0., height, width]]).to(dtype=torch_dtype).to(brushnet['brushnet'].device)
403
+
404
+ if not is_SDXL:
405
+ pooled_prompt_embeds = None
406
+ negative_pooled_prompt_embeds = None
407
+ time_ids = None
408
+
409
+ # apply patch to model
410
+
411
+ brushnet_conditioning_scale = scale
412
+ control_guidance_start = start_at
413
+ control_guidance_end = end_at
414
+
415
+ add_brushnet_patch(model,
416
+ brushnet['brushnet'],
417
+ torch_dtype,
418
+ conditioning_latents,
419
+ (brushnet_conditioning_scale, control_guidance_start, control_guidance_end),
420
+ prompt_embeds, negative_prompt_embeds,
421
+ pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
422
+ False)
423
+
424
+ latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=brushnet['brushnet'].device)
425
+
426
+ return (model, positive, negative, {"samples":latent},)
427
+
428
+
429
+ class BlendInpaint:
430
+
431
+ @classmethod
432
+ def INPUT_TYPES(s):
433
+ return {"required":
434
+ {
435
+ "inpaint": ("IMAGE",),
436
+ "original": ("IMAGE",),
437
+ "mask": ("MASK",),
438
+ "kernel": ("INT", {"default": 10, "min": 1, "max": 1000}),
439
+ "sigma": ("FLOAT", {"default": 10.0, "min": 0.01, "max": 1000}),
440
+ },
441
+ "optional":
442
+ {
443
+ "origin": ("VECTOR",),
444
+ },
445
+ }
446
+
447
+ CATEGORY = "inpaint"
448
+ RETURN_TYPES = ("IMAGE","MASK",)
449
+ RETURN_NAMES = ("image","MASK",)
450
+
451
+ FUNCTION = "blend_inpaint"
452
+
453
+ def blend_inpaint(self, inpaint: torch.Tensor, original: torch.Tensor, mask, kernel: int, sigma:int, origin=None) -> Tuple[torch.Tensor]:
454
+
455
+ original, mask = check_image_mask(original, mask, 'Blend Inpaint')
456
+
457
+ if len(inpaint.shape) < 4:
458
+ # image tensor shape should be [B, H, W, C], but batch somehow is missing
459
+ inpaint = inpaint[None,:,:,:]
460
+
461
+ if inpaint.shape[0] < original.shape[0]:
462
+ print("Blend Inpaint gets batch of original images (%d) but only (%d) inpaint images" % (original.shape[0], inpaint.shape[0]))
463
+ original= original[:inpaint.shape[0],:,:]
464
+ mask = mask[:inpaint.shape[0],:,:]
465
+
466
+ if inpaint.shape[0] > original.shape[0]:
467
+ # batch over inpaint
468
+ count = 0
469
+ original_list = []
470
+ mask_list = []
471
+ origin_list = []
472
+ while (count < inpaint.shape[0]):
473
+ for i in range(original.shape[0]):
474
+ original_list.append(original[i][None,:,:,:])
475
+ mask_list.append(mask[i][None,:,:])
476
+ if origin is not None:
477
+ origin_list.append(origin[i][None,:])
478
+ count += 1
479
+ if count >= inpaint.shape[0]:
480
+ break
481
+ original = torch.concat(original_list, dim=0)
482
+ mask = torch.concat(mask_list, dim=0)
483
+ if origin is not None:
484
+ origin = torch.concat(origin_list, dim=0)
485
+
486
+ if kernel % 2 == 0:
487
+ kernel += 1
488
+ transform = T.GaussianBlur(kernel_size=(kernel, kernel), sigma=(sigma, sigma))
489
+
490
+ ret = []
491
+ blurred = []
492
+ for i in range(inpaint.shape[0]):
493
+ if origin is None:
494
+ blurred_mask = transform(mask[i][None,None,:,:]).to(original.device).to(original.dtype)
495
+ blurred.append(blurred_mask[0])
496
+
497
+ result = torch.nn.functional.interpolate(
498
+ inpaint[i][None,:,:,:].permute(0, 3, 1, 2),
499
+ size=(
500
+ original[i].shape[0],
501
+ original[i].shape[1],
502
+ )
503
+ ).permute(0, 2, 3, 1).to(original.device).to(original.dtype)
504
+ else:
505
+ # got mask from CutForInpaint
506
+ height, width, _ = original[i].shape
507
+ x0 = origin[i][0].item()
508
+ y0 = origin[i][1].item()
509
+
510
+ if mask[i].shape[0] < height or mask[i].shape[1] < width:
511
+ padded_mask = F.pad(input=mask[i], pad=(x0, width-x0-mask[i].shape[1],
512
+ y0, height-y0-mask[i].shape[0]), mode='constant', value=0)
513
+ else:
514
+ padded_mask = mask[i]
515
+ blurred_mask = transform(padded_mask[None,None,:,:]).to(original.device).to(original.dtype)
516
+ blurred.append(blurred_mask[0][0])
517
+
518
+ result = F.pad(input=inpaint[i], pad=(0, 0, x0, width-x0-inpaint[i].shape[1],
519
+ y0, height-y0-inpaint[i].shape[0]), mode='constant', value=0)
520
+ result = result[None,:,:,:].to(original.device).to(original.dtype)
521
+
522
+ ret.append(original[i] * (1.0 - blurred_mask[0][0][:,:,None]) + result[0] * blurred_mask[0][0][:,:,None])
523
+
524
+ return (torch.stack(ret), torch.stack(blurred), )
525
+
526
+
527
+ class CutForInpaint:
528
+
529
+ @classmethod
530
+ def INPUT_TYPES(s):
531
+ return {"required":
532
+ {
533
+ "image": ("IMAGE",),
534
+ "mask": ("MASK",),
535
+ "width": ("INT", {"default": 512, "min": 64, "max": 2048}),
536
+ "height": ("INT", {"default": 512, "min": 64, "max": 2048}),
537
+ },
538
+ }
539
+
540
+ CATEGORY = "inpaint"
541
+ RETURN_TYPES = ("IMAGE","MASK","VECTOR",)
542
+ RETURN_NAMES = ("image","mask","origin",)
543
+
544
+ FUNCTION = "cut_for_inpaint"
545
+
546
+ def cut_for_inpaint(self, image: torch.Tensor, mask: torch.Tensor, width: int, height: int):
547
+
548
+ image, mask = check_image_mask(image, mask, 'BrushNet')
549
+
550
+ ret = []
551
+ msk = []
552
+ org = []
553
+ for i in range(image.shape[0]):
554
+ x0, y0, w, h = cut_with_mask(mask[i], width, height)
555
+ ret.append((image[i][y0:y0+h,x0:x0+w,:]))
556
+ msk.append((mask[i][y0:y0+h,x0:x0+w]))
557
+ org.append(torch.IntTensor([x0,y0]))
558
+
559
+ return (torch.stack(ret), torch.stack(msk), torch.stack(org), )
560
+
561
+
562
+ #### Utility function
563
+
564
+ def get_files_with_extension(folder_name, extension=['.safetensors']):
565
+
566
+ try:
567
+ folders = folder_paths.get_folder_paths(folder_name)
568
+ except:
569
+ folders = []
570
+
571
+ if not folders:
572
+ folders = [os.path.join(folder_paths.models_dir, folder_name)]
573
+ if not os.path.isdir(folders[0]):
574
+ folders = [os.path.join(folder_paths.base_path, folder_name)]
575
+ if not os.path.isdir(folders[0]):
576
+ return {}
577
+
578
+ filtered_folders = []
579
+ for x in folders:
580
+ if not os.path.isdir(x):
581
+ continue
582
+ the_same = False
583
+ for y in filtered_folders:
584
+ if os.path.samefile(x, y):
585
+ the_same = True
586
+ break
587
+ if not the_same:
588
+ filtered_folders.append(x)
589
+
590
+ if not filtered_folders:
591
+ return {}
592
+
593
+ output = {}
594
+ for x in filtered_folders:
595
+ files, folders_all = folder_paths.recursive_search(x, excluded_dir_names=[".git"])
596
+ filtered_files = folder_paths.filter_files_extensions(files, extension)
597
+
598
+ for f in filtered_files:
599
+ output[f] = x
600
+
601
+ return output
602
+
603
+
604
+ # get blocks from state_dict so we could know which model it is
605
+ def brushnet_blocks(sd):
606
+ brushnet_down_block = 0
607
+ brushnet_mid_block = 0
608
+ brushnet_up_block = 0
609
+ for key in sd:
610
+ if 'brushnet_down_block' in key:
611
+ brushnet_down_block += 1
612
+ if 'brushnet_mid_block' in key:
613
+ brushnet_mid_block += 1
614
+ if 'brushnet_up_block' in key:
615
+ brushnet_up_block += 1
616
+ return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, len(sd))
617
+
618
+
619
+ # Check models compatibility
620
+ def check_compatibilty(model, brushnet):
621
+ is_SDXL = False
622
+ is_PP = False
623
+ if isinstance(model.model.model_config, comfy.supported_models.SD15):
624
+ print('Base model type: SD1.5')
625
+ is_SDXL = False
626
+ if brushnet["SDXL"]:
627
+ raise Exception("Base model is SD15, but BrushNet is SDXL type")
628
+ if brushnet["PP"]:
629
+ is_PP = True
630
+ elif isinstance(model.model.model_config, comfy.supported_models.SDXL):
631
+ print('Base model type: SDXL')
632
+ is_SDXL = True
633
+ if not brushnet["SDXL"]:
634
+ raise Exception("Base model is SDXL, but BrushNet is SD15 type")
635
+ else:
636
+ print('Base model type: ', type(model.model.model_config))
637
+ raise Exception("Unsupported model type: " + str(type(model.model.model_config)))
638
+
639
+ return (is_SDXL, is_PP)
640
+
641
+
642
+ def check_image_mask(image, mask, name):
643
+ if len(image.shape) < 4:
644
+ # image tensor shape should be [B, H, W, C], but batch somehow is missing
645
+ image = image[None,:,:,:]
646
+
647
+ if len(mask.shape) > 3:
648
+ # mask tensor shape should be [B, H, W] but we get [B, H, W, C], image may be?
649
+ # take first mask, red channel
650
+ mask = (mask[:,:,:,0])[:,:,:]
651
+ elif len(mask.shape) < 3:
652
+ # mask tensor shape should be [B, H, W] but batch somehow is missing
653
+ mask = mask[None,:,:]
654
+
655
+ if image.shape[0] > mask.shape[0]:
656
+ print(name, "gets batch of images (%d) but only %d masks" % (image.shape[0], mask.shape[0]))
657
+ if mask.shape[0] == 1:
658
+ print(name, "will copy the mask to fill batch")
659
+ mask = torch.cat([mask] * image.shape[0], dim=0)
660
+ else:
661
+ print(name, "will add empty masks to fill batch")
662
+ empty_mask = torch.zeros([image.shape[0] - mask.shape[0], mask.shape[1], mask.shape[2]])
663
+ mask = torch.cat([mask, empty_mask], dim=0)
664
+ elif image.shape[0] < mask.shape[0]:
665
+ print(name, "gets batch of images (%d) but too many (%d) masks" % (image.shape[0], mask.shape[0]))
666
+ mask = mask[:image.shape[0],:,:]
667
+
668
+ return (image, mask)
669
+
670
+
671
+ # Prepare image and mask
672
+ def prepare_image(image, mask):
673
+
674
+ image, mask = check_image_mask(image, mask, 'BrushNet')
675
+
676
+ print("BrushNet image.shape =", image.shape, "mask.shape =", mask.shape)
677
+
678
+ if mask.shape[2] != image.shape[2] or mask.shape[1] != image.shape[1]:
679
+ raise Exception("Image and mask should be the same size")
680
+
681
+ # As a suggestion of inferno46n2 (https://github.com/nullquant/ComfyUI-BrushNet/issues/64)
682
+ mask = mask.round()
683
+
684
+ masked_image = image * (1.0 - mask[:,:,:,None])
685
+
686
+ return (masked_image, mask)
687
+
688
+
689
+ # Get origin of the mask
690
+ def cut_with_mask(mask, width, height):
691
+ iy, ix = (mask == 1).nonzero(as_tuple=True)
692
+
693
+ h0, w0 = mask.shape
694
+
695
+ if iy.numel() == 0:
696
+ x_c = w0 / 2.0
697
+ y_c = h0 / 2.0
698
+ else:
699
+ x_min = ix.min().item()
700
+ x_max = ix.max().item()
701
+ y_min = iy.min().item()
702
+ y_max = iy.max().item()
703
+
704
+ if x_max - x_min > width or y_max - y_min > height:
705
+ raise Exception("Masked area is bigger than provided dimensions")
706
+
707
+ x_c = (x_min + x_max) / 2.0
708
+ y_c = (y_min + y_max) / 2.0
709
+
710
+ width2 = width / 2.0
711
+ height2 = height / 2.0
712
+
713
+ if w0 <= width:
714
+ x0 = 0
715
+ w = w0
716
+ else:
717
+ x0 = max(0, x_c - width2)
718
+ w = width
719
+ if x0 + width > w0:
720
+ x0 = w0 - width
721
+
722
+ if h0 <= height:
723
+ y0 = 0
724
+ h = h0
725
+ else:
726
+ y0 = max(0, y_c - height2)
727
+ h = height
728
+ if y0 + height > h0:
729
+ y0 = h0 - height
730
+
731
+ return (int(x0), int(y0), int(w), int(h))
732
+
733
+
734
+ # Prepare conditioning_latents
735
+ @torch.inference_mode()
736
+ def get_image_latents(masked_image, mask, vae, scaling_factor):
737
+ processed_image = masked_image.to(vae.device)
738
+ image_latents = vae.encode(processed_image[:,:,:,:3]) * scaling_factor
739
+ processed_mask = 1. - mask[:,None,:,:]
740
+ interpolated_mask = torch.nn.functional.interpolate(
741
+ processed_mask,
742
+ size=(
743
+ image_latents.shape[-2],
744
+ image_latents.shape[-1]
745
+ )
746
+ )
747
+ interpolated_mask = interpolated_mask.to(image_latents.device)
748
+
749
+ conditioning_latents = [image_latents, interpolated_mask]
750
+
751
+ print('BrushNet CL: image_latents shape =', image_latents.shape, 'interpolated_mask shape =', interpolated_mask.shape)
752
+
753
+ return conditioning_latents
754
+
755
+
756
+ # Main function where magic happens
757
+ @torch.inference_mode()
758
+ def brushnet_inference(x, timesteps, transformer_options, debug):
759
+ if 'model_patch' not in transformer_options:
760
+ print('BrushNet inference: there is no model_patch key in transformer_options')
761
+ return ([], 0, [])
762
+ mp = transformer_options['model_patch']
763
+ if 'brushnet' not in mp:
764
+ print('BrushNet inference: there is no brushnet key in mdel_patch')
765
+ return ([], 0, [])
766
+ bo = mp['brushnet']
767
+ if 'model' not in bo:
768
+ print('BrushNet inference: there is no model key in brushnet')
769
+ return ([], 0, [])
770
+ brushnet = bo['model']
771
+ if not (isinstance(brushnet, BrushNetModel) or isinstance(brushnet, PowerPaintModel)):
772
+ print('BrushNet model is not a BrushNetModel class')
773
+ return ([], 0, [])
774
+
775
+ torch_dtype = bo['dtype']
776
+ cl_list = bo['latents']
777
+ brushnet_conditioning_scale, control_guidance_start, control_guidance_end = bo['controls']
778
+ pe = bo['prompt_embeds']
779
+ npe = bo['negative_prompt_embeds']
780
+ ppe, nppe, time_ids = bo['add_embeds']
781
+
782
+ #do_classifier_free_guidance = mp['free_guidance']
783
+ do_classifier_free_guidance = len(transformer_options['cond_or_uncond']) > 1
784
+
785
+ x = x.detach().clone()
786
+ x = x.to(torch_dtype).to(brushnet.device)
787
+
788
+ timesteps = timesteps.detach().clone()
789
+ timesteps = timesteps.to(torch_dtype).to(brushnet.device)
790
+
791
+ total_steps = mp['total_steps']
792
+ step = mp['step']
793
+
794
+ added_cond_kwargs = {}
795
+
796
+ if do_classifier_free_guidance and step == 0:
797
+ print('BrushNet inference: do_classifier_free_guidance is True')
798
+
799
+ sub_idx = None
800
+ if 'ad_params' in transformer_options and 'sub_idxs' in transformer_options['ad_params']:
801
+ sub_idx = transformer_options['ad_params']['sub_idxs']
802
+
803
+ # we have batch input images
804
+ batch = cl_list[0].shape[0]
805
+ # we have incoming latents
806
+ latents_incoming = x.shape[0]
807
+ # and we already got some
808
+ latents_got = bo['latent_id']
809
+ if step == 0 or batch > 1:
810
+ print('BrushNet inference, step = %d: image batch = %d, got %d latents, starting from %d' \
811
+ % (step, batch, latents_incoming, latents_got))
812
+
813
+ image_latents = []
814
+ masks = []
815
+ prompt_embeds = []
816
+ negative_prompt_embeds = []
817
+ pooled_prompt_embeds = []
818
+ negative_pooled_prompt_embeds = []
819
+ if sub_idx:
820
+ # AnimateDiff indexes detected
821
+ if step == 0:
822
+ print('BrushNet inference: AnimateDiff indexes detected and applied')
823
+
824
+ batch = len(sub_idx)
825
+
826
+ if do_classifier_free_guidance:
827
+ for i in sub_idx:
828
+ image_latents.append(cl_list[0][i][None,:,:,:])
829
+ masks.append(cl_list[1][i][None,:,:,:])
830
+ prompt_embeds.append(pe)
831
+ negative_prompt_embeds.append(npe)
832
+ pooled_prompt_embeds.append(ppe)
833
+ negative_pooled_prompt_embeds.append(nppe)
834
+ for i in sub_idx:
835
+ image_latents.append(cl_list[0][i][None,:,:,:])
836
+ masks.append(cl_list[1][i][None,:,:,:])
837
+ else:
838
+ for i in sub_idx:
839
+ image_latents.append(cl_list[0][i][None,:,:,:])
840
+ masks.append(cl_list[1][i][None,:,:,:])
841
+ prompt_embeds.append(pe)
842
+ pooled_prompt_embeds.append(ppe)
843
+ else:
844
+ # do_classifier_free_guidance = 2 passes, 1st pass is cond, 2nd is uncond
845
+ continue_batch = True
846
+ for i in range(latents_incoming):
847
+ number = latents_got + i
848
+ if number < batch:
849
+ # 1st pass, cond
850
+ image_latents.append(cl_list[0][number][None,:,:,:])
851
+ masks.append(cl_list[1][number][None,:,:,:])
852
+ prompt_embeds.append(pe)
853
+ pooled_prompt_embeds.append(ppe)
854
+ elif do_classifier_free_guidance and number < batch * 2:
855
+ # 2nd pass, uncond
856
+ image_latents.append(cl_list[0][number-batch][None,:,:,:])
857
+ masks.append(cl_list[1][number-batch][None,:,:,:])
858
+ negative_prompt_embeds.append(npe)
859
+ negative_pooled_prompt_embeds.append(nppe)
860
+ else:
861
+ # latent batch
862
+ image_latents.append(cl_list[0][0][None,:,:,:])
863
+ masks.append(cl_list[1][0][None,:,:,:])
864
+ prompt_embeds.append(pe)
865
+ pooled_prompt_embeds.append(ppe)
866
+ latents_got = -i
867
+ continue_batch = False
868
+
869
+ if continue_batch:
870
+ # we don't have full batch yet
871
+ if do_classifier_free_guidance:
872
+ if number < batch * 2 - 1:
873
+ bo['latent_id'] = number + 1
874
+ else:
875
+ bo['latent_id'] = 0
876
+ else:
877
+ if number < batch - 1:
878
+ bo['latent_id'] = number + 1
879
+ else:
880
+ bo['latent_id'] = 0
881
+ else:
882
+ bo['latent_id'] = 0
883
+
884
+ cl = []
885
+ for il, m in zip(image_latents, masks):
886
+ cl.append(torch.concat([il, m], dim=1))
887
+ cl2apply = torch.concat(cl, dim=0)
888
+
889
+ conditioning_latents = cl2apply.to(torch_dtype).to(brushnet.device)
890
+
891
+ prompt_embeds.extend(negative_prompt_embeds)
892
+ prompt_embeds = torch.concat(prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
893
+
894
+ if ppe is not None:
895
+ added_cond_kwargs = {}
896
+ added_cond_kwargs['time_ids'] = torch.concat([time_ids] * latents_incoming, dim = 0).to(torch_dtype).to(brushnet.device)
897
+
898
+ pooled_prompt_embeds.extend(negative_pooled_prompt_embeds)
899
+ pooled_prompt_embeds = torch.concat(pooled_prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
900
+ added_cond_kwargs['text_embeds'] = pooled_prompt_embeds
901
+ else:
902
+ added_cond_kwargs = None
903
+
904
+ if x.shape[2] != conditioning_latents.shape[2] or x.shape[3] != conditioning_latents.shape[3]:
905
+ if step == 0:
906
+ print('BrushNet inference: image', conditioning_latents.shape, 'and latent', x.shape, 'have different size, resizing image')
907
+ conditioning_latents = torch.nn.functional.interpolate(
908
+ conditioning_latents, size=(
909
+ x.shape[2],
910
+ x.shape[3],
911
+ ), mode='bicubic',
912
+ ).to(torch_dtype).to(brushnet.device)
913
+
914
+ if step == 0:
915
+ print('BrushNet inference: sample', x.shape, ', CL', conditioning_latents.shape, 'dtype', torch_dtype)
916
+
917
+ if debug: print('BrushNet: step =', step)
918
+
919
+ if step < control_guidance_start or step > control_guidance_end:
920
+ cond_scale = 0.0
921
+ else:
922
+ cond_scale = brushnet_conditioning_scale
923
+
924
+ return brushnet(x,
925
+ encoder_hidden_states=prompt_embeds,
926
+ brushnet_cond=conditioning_latents,
927
+ timestep = timesteps,
928
+ conditioning_scale=cond_scale,
929
+ guess_mode=False,
930
+ added_cond_kwargs=added_cond_kwargs,
931
+ return_dict=False,
932
+ debug=debug,
933
+ )
934
+
935
+
936
+ # This is main patch function
937
+ def add_brushnet_patch(model, brushnet, torch_dtype, conditioning_latents,
938
+ controls,
939
+ prompt_embeds, negative_prompt_embeds,
940
+ pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
941
+ debug):
942
+
943
+ is_SDXL = isinstance(model.model.model_config, comfy.supported_models.SDXL)
944
+
945
+ if is_SDXL:
946
+ input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
947
+ [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
948
+ [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
949
+ [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
950
+ [4, comfy.ldm.modules.attention.SpatialTransformer],
951
+ [5, comfy.ldm.modules.attention.SpatialTransformer],
952
+ [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
953
+ [7, comfy.ldm.modules.attention.SpatialTransformer],
954
+ [8, comfy.ldm.modules.attention.SpatialTransformer]]
955
+ middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
956
+ output_blocks = [[0, comfy.ldm.modules.attention.SpatialTransformer],
957
+ [1, comfy.ldm.modules.attention.SpatialTransformer],
958
+ [2, comfy.ldm.modules.attention.SpatialTransformer],
959
+ [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
960
+ [3, comfy.ldm.modules.attention.SpatialTransformer],
961
+ [4, comfy.ldm.modules.attention.SpatialTransformer],
962
+ [5, comfy.ldm.modules.attention.SpatialTransformer],
963
+ [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
964
+ [6, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
965
+ [7, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
966
+ [8, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
967
+ else:
968
+ input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
969
+ [1, comfy.ldm.modules.attention.SpatialTransformer],
970
+ [2, comfy.ldm.modules.attention.SpatialTransformer],
971
+ [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
972
+ [4, comfy.ldm.modules.attention.SpatialTransformer],
973
+ [5, comfy.ldm.modules.attention.SpatialTransformer],
974
+ [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
975
+ [7, comfy.ldm.modules.attention.SpatialTransformer],
976
+ [8, comfy.ldm.modules.attention.SpatialTransformer],
977
+ [9, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
978
+ [10, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
979
+ [11, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
980
+ middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
981
+ output_blocks = [[0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
982
+ [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
983
+ [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
984
+ [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
985
+ [3, comfy.ldm.modules.attention.SpatialTransformer],
986
+ [4, comfy.ldm.modules.attention.SpatialTransformer],
987
+ [5, comfy.ldm.modules.attention.SpatialTransformer],
988
+ [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
989
+ [6, comfy.ldm.modules.attention.SpatialTransformer],
990
+ [7, comfy.ldm.modules.attention.SpatialTransformer],
991
+ [8, comfy.ldm.modules.attention.SpatialTransformer],
992
+ [8, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
993
+ [9, comfy.ldm.modules.attention.SpatialTransformer],
994
+ [10, comfy.ldm.modules.attention.SpatialTransformer],
995
+ [11, comfy.ldm.modules.attention.SpatialTransformer]]
996
+
997
+ def last_layer_index(block, tp):
998
+ layer_list = []
999
+ for layer in block:
1000
+ layer_list.append(type(layer))
1001
+ layer_list.reverse()
1002
+ if tp not in layer_list:
1003
+ return -1, layer_list.reverse()
1004
+ return len(layer_list) - 1 - layer_list.index(tp), layer_list
1005
+
1006
+ def brushnet_forward(model, x, timesteps, transformer_options, control):
1007
+ if 'brushnet' not in transformer_options['model_patch']:
1008
+ input_samples = []
1009
+ mid_sample = 0
1010
+ output_samples = []
1011
+ else:
1012
+ # brushnet inference
1013
+ input_samples, mid_sample, output_samples = brushnet_inference(x, timesteps, transformer_options, debug)
1014
+
1015
+ # give additional samples to blocks
1016
+ for i, tp in input_blocks:
1017
+ idx, layer_list = last_layer_index(model.input_blocks[i], tp)
1018
+ if idx < 0:
1019
+ print("BrushNet can't find", tp, "layer in", i,"input block:", layer_list)
1020
+ continue
1021
+ model.input_blocks[i][idx].add_sample_after = input_samples.pop(0) if input_samples else 0
1022
+
1023
+ idx, layer_list = last_layer_index(model.middle_block, middle_block[1])
1024
+ if idx < 0:
1025
+ print("BrushNet can't find", middle_block[1], "layer in middle block", layer_list)
1026
+ model.middle_block[idx].add_sample_after = mid_sample
1027
+
1028
+ for i, tp in output_blocks:
1029
+ idx, layer_list = last_layer_index(model.output_blocks[i], tp)
1030
+ if idx < 0:
1031
+ print("BrushNet can't find", tp, "layer in", i,"outnput block:", layer_list)
1032
+ continue
1033
+ model.output_blocks[i][idx].add_sample_after = output_samples.pop(0) if output_samples else 0
1034
+
1035
+ patch_model_function_wrapper(model, brushnet_forward)
1036
+
1037
+ to = add_model_patch_option(model)
1038
+ mp = to['model_patch']
1039
+ if 'brushnet' not in mp:
1040
+ mp['brushnet'] = {}
1041
+ bo = mp['brushnet']
1042
+
1043
+ bo['model'] = brushnet
1044
+ bo['dtype'] = torch_dtype
1045
+ bo['latents'] = conditioning_latents
1046
+ bo['controls'] = controls
1047
+ bo['prompt_embeds'] = prompt_embeds
1048
+ bo['negative_prompt_embeds'] = negative_prompt_embeds
1049
+ bo['add_embeds'] = (pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids)
1050
+ bo['latent_id'] = 0
1051
+
1052
+ # patch layers `forward` so we can apply brushnet
1053
+ def forward_patched_by_brushnet(self, x, *args, **kwargs):
1054
+ h = self.original_forward(x, *args, **kwargs)
1055
+ if hasattr(self, 'add_sample_after') and type(self):
1056
+ to_add = self.add_sample_after
1057
+ if torch.is_tensor(to_add):
1058
+ # interpolate due to RAUNet
1059
+ if h.shape[2] != to_add.shape[2] or h.shape[3] != to_add.shape[3]:
1060
+ to_add = torch.nn.functional.interpolate(to_add, size=(h.shape[2], h.shape[3]), mode='bicubic')
1061
+ h += to_add.to(h.dtype).to(h.device)
1062
+ else:
1063
+ h += self.add_sample_after
1064
+ self.add_sample_after = 0
1065
+ return h
1066
+
1067
+ for i, block in enumerate(model.model.diffusion_model.input_blocks):
1068
+ for j, layer in enumerate(block):
1069
+ if not hasattr(layer, 'original_forward'):
1070
+ layer.original_forward = layer.forward
1071
+ layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
1072
+ layer.add_sample_after = 0
1073
+
1074
+ for j, layer in enumerate(model.model.diffusion_model.middle_block):
1075
+ if not hasattr(layer, 'original_forward'):
1076
+ layer.original_forward = layer.forward
1077
+ layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
1078
+ layer.add_sample_after = 0
1079
+
1080
+ for i, block in enumerate(model.model.diffusion_model.output_blocks):
1081
+ for j, layer in enumerate(block):
1082
+ if not hasattr(layer, 'original_forward'):
1083
+ layer.original_forward = layer.forward
1084
+ layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
1085
+ layer.add_sample_after = 0
example/BrushNet_SDXL_basic.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 62, "last_link_id": 128, "nodes": [{"id": 54, "type": "VAEDecode", "pos": [1921, 38], "size": {"0": 210, "1": 46}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 91}, {"name": "vae", "type": "VAE", "link": 92}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [93], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 12, "type": "PreviewImage", "pos": [1515, 419], "size": {"0": 617.4000244140625, "1": 673.7999267578125}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 93}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 52, "type": "KSampler", "pos": [1564, 101], "size": {"0": 315, "1": 262}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 118}, {"name": "positive", "type": "CONDITIONING", "link": 119}, {"name": "negative", "type": "CONDITIONING", "link": 120}, {"name": "latent_image", "type": "LATENT", "link": 121, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [91], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [2, "fixed", 20, 5, "dpmpp_2m_sde_gpu", "karras", 1]}, {"id": 49, "type": "CLIPTextEncode", "pos": [649, 21], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 78}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [123], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["a vase"], "color": "#232", "bgcolor": "#353"}, {"id": 50, "type": "CLIPTextEncode", "pos": [651, 168], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 80}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [124], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 45, "type": "BrushNetLoader", "pos": [8, 251], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [125], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet_xl/diffusion_pytorch_model.safetensors"]}, {"id": 58, "type": "LoadImage", "pos": [10, 404], "size": {"0": 646.0000610351562, "1": 703.5999755859375}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [126], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image3 (2).png", "image"]}, {"id": 59, "type": "LoadImageMask", "pos": [689, 601], "size": {"0": 315, "1": 318}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "MASK", "type": "MASK", "links": [127], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "LoadImageMask"}, "widgets_values": ["test_mask3 (1).png", "red", "image"]}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [3, 44], "size": {"0": 481, "1": 158}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [122], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [78, 80], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [92, 128], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["Juggernaut-XL_v9_RunDiffusionPhoto_v2.safetensors"]}, {"id": 62, "type": "BrushNet", "pos": [1130, 102], "size": {"0": 315, "1": 226}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 122}, {"name": "vae", "type": "VAE", "link": 128}, {"name": "image", "type": "IMAGE", "link": 126}, {"name": "mask", "type": "MASK", "link": 127}, {"name": "brushnet", "type": "BRMODEL", "link": 125}, {"name": "positive", "type": "CONDITIONING", "link": 123}, {"name": "negative", "type": "CONDITIONING", "link": 124}], "outputs": [{"name": "model", "type": "MODEL", "links": [118], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [119], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [120], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [121], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [1, 0, 10000]}], "links": [[78, 47, 1, 49, 0, "CLIP"], [80, 47, 1, 50, 0, "CLIP"], [91, 52, 0, 54, 0, "LATENT"], [92, 47, 2, 54, 1, "VAE"], [93, 54, 0, 12, 0, "IMAGE"], [118, 62, 0, 52, 0, "MODEL"], [119, 62, 1, 52, 1, "CONDITIONING"], [120, 62, 2, 52, 2, "CONDITIONING"], [121, 62, 3, 52, 3, "LATENT"], [122, 47, 0, 62, 0, "MODEL"], [123, 49, 0, 62, 5, "CONDITIONING"], [124, 50, 0, 62, 6, "CONDITIONING"], [125, 45, 0, 62, 4, "BRMODEL"], [126, 58, 0, 62, 2, "IMAGE"], [127, 59, 0, 62, 3, "MASK"], [128, 47, 2, 62, 1, "VAE"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_SDXL_basic.png ADDED

Git LFS Details

  • SHA256: c4d8327182c11d7b4f87fdd1fabc9563baa8c22481142e17a4eca8232279f658
  • Pointer size: 132 Bytes
  • Size of remote file: 2.74 MB
example/BrushNet_SDXL_upscale.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 76, "last_link_id": 145, "nodes": [{"id": 50, "type": "CLIPTextEncode", "pos": [651, 168], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 80}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [111], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 58, "type": "LoadImage", "pos": [10, 404], "size": {"0": 646.0000610351562, "1": 703.5999755859375}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [113], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image3 (2).png", "image"]}, {"id": 69, "type": "CLIPTextEncode", "pos": [1896, -243], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 127}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [128], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#232", "bgcolor": "#353"}, {"id": 70, "type": "CLIPTextEncode", "pos": [1895, -100], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 129}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [130], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [3, 44], "size": {"0": 481, "1": 158}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [114, 134], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [78, 80, 127, 129], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [92, 115, 126], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["Juggernaut-XL_v9_RunDiffusionPhoto_v2.safetensors"]}, {"id": 72, "type": "UpscaleModelLoader", "pos": [1904, 43], "size": {"0": 315, "1": 58}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "UPSCALE_MODEL", "type": "UPSCALE_MODEL", "links": [131], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "UpscaleModelLoader"}, "widgets_values": ["4x-UltraSharp.pth"]}, {"id": 59, "type": "LoadImageMask", "pos": [689, 601], "size": {"0": 315, "1": 318}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "MASK", "type": "MASK", "links": [139], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "LoadImageMask"}, "widgets_values": ["test_mask3 (1).png", "red", "image"]}, {"id": 12, "type": "PreviewImage", "pos": [1516, 419], "size": {"0": 617.4000244140625, "1": 673.7999267578125}, "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 93}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 73, "type": "PreviewImage", "pos": [2667, 419], "size": {"0": 639.9539794921875, "1": 667.046142578125}, "flags": {}, "order": 15, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 132}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 45, "type": "BrushNetLoader", "pos": [8, 251], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 4, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [116], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet_xl/random_mask.safetensors", "float16"]}, {"id": 68, "type": "UltimateSDUpscale", "pos": [2304, -81], "size": {"0": 315, "1": 614}, "flags": {}, "order": 14, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 145}, {"name": "model", "type": "MODEL", "link": 134}, {"name": "positive", "type": "CONDITIONING", "link": 128}, {"name": "negative", "type": "CONDITIONING", "link": 130}, {"name": "vae", "type": "VAE", "link": 126}, {"name": "upscale_model", "type": "UPSCALE_MODEL", "link": 131}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [132], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "UltimateSDUpscale"}, "widgets_values": [2, 305700295020080, "randomize", 20, 8, "euler", "normal", 0.2, "Linear", 512, 512, 8, 32, "None", 1, 64, 8, 16, true, false]}, {"id": 61, "type": "BrushNet", "pos": [1111, 105], "size": {"0": 315, "1": 246}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 114}, {"name": "vae", "type": "VAE", "link": 115}, {"name": "image", "type": "IMAGE", "link": 113}, {"name": "mask", "type": "MASK", "link": 140}, {"name": "brushnet", "type": "BRMODEL", "link": 116}, {"name": "positive", "type": "CONDITIONING", "link": 110}, {"name": "negative", "type": "CONDITIONING", "link": 111}, {"name": "clip", "type": "PPCLIP", "link": null}], "outputs": [{"name": "model", "type": "MODEL", "links": [106], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [107], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [108], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [143], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [0.8, 0, 10000]}, {"id": 75, "type": "GrowMask", "pos": [1023, 478], "size": {"0": 315, "1": 82}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "mask", "type": "MASK", "link": 139}], "outputs": [{"name": "MASK", "type": "MASK", "links": [140], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "GrowMask"}, "widgets_values": [4, false]}, {"id": 49, "type": "CLIPTextEncode", "pos": [649, 21], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 78}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [110], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["a vase with flowers"], "color": "#232", "bgcolor": "#353"}, {"id": 52, "type": "KSampler", "pos": [1564, 101], "size": {"0": 315, "1": 262}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 106}, {"name": "positive", "type": "CONDITIONING", "link": 107}, {"name": "negative", "type": "CONDITIONING", "link": 108}, {"name": "latent_image", "type": "LATENT", "link": 143, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [91], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [6, "fixed", 15, 8, "euler_ancestral", "karras", 1]}, {"id": 54, "type": "VAEDecode", "pos": [1958, 155], "size": {"0": 210, "1": 46}, "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 91}, {"name": "vae", "type": "VAE", "link": 92}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [93, 145], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}], "links": [[78, 47, 1, 49, 0, "CLIP"], [80, 47, 1, 50, 0, "CLIP"], [91, 52, 0, 54, 0, "LATENT"], [92, 47, 2, 54, 1, "VAE"], [93, 54, 0, 12, 0, "IMAGE"], [106, 61, 0, 52, 0, "MODEL"], [107, 61, 1, 52, 1, "CONDITIONING"], [108, 61, 2, 52, 2, "CONDITIONING"], [110, 49, 0, 61, 5, "CONDITIONING"], [111, 50, 0, 61, 6, "CONDITIONING"], [113, 58, 0, 61, 2, "IMAGE"], [114, 47, 0, 61, 0, "MODEL"], [115, 47, 2, 61, 1, "VAE"], [116, 45, 0, 61, 4, "BRMODEL"], [126, 47, 2, 68, 4, "VAE"], [127, 47, 1, 69, 0, "CLIP"], [128, 69, 0, 68, 2, "CONDITIONING"], [129, 47, 1, 70, 0, "CLIP"], [130, 70, 0, 68, 3, "CONDITIONING"], [131, 72, 0, 68, 5, "UPSCALE_MODEL"], [132, 68, 0, 73, 0, "IMAGE"], [134, 47, 0, 68, 1, "MODEL"], [139, 59, 0, 75, 0, "MASK"], [140, 75, 0, 61, 3, "MASK"], [143, 61, 3, 52, 3, "LATENT"], [145, 54, 0, 68, 0, "IMAGE"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_SDXL_upscale.png ADDED

Git LFS Details

  • SHA256: 0d645692a5e2e07a57ce2c8e0f3998217a5295773e2ca8fb68be411681be2170
  • Pointer size: 132 Bytes
  • Size of remote file: 2.78 MB
example/BrushNet_basic.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 64, "last_link_id": 136, "nodes": [{"id": 12, "type": "PreviewImage", "pos": [1549, 441], "size": {"0": 580.6002197265625, "1": 613}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 93}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [3, 44], "size": {"0": 481, "1": 158}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [125], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [78, 80], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [92, 126], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 49, "type": "CLIPTextEncode", "pos": [649, 21], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 78}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [127], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["a burger"], "color": "#232", "bgcolor": "#353"}, {"id": 50, "type": "CLIPTextEncode", "pos": [651, 168], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 80}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [128], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 45, "type": "BrushNetLoader", "pos": [8, 251], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [129], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask_brushnet_ckpt/diffusion_pytorch_model.safetensors"]}, {"id": 52, "type": "KSampler", "pos": [1571, 117], "size": {"0": 315, "1": 262}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 121}, {"name": "positive", "type": "CONDITIONING", "link": 122}, {"name": "negative", "type": "CONDITIONING", "link": 123}, {"name": "latent_image", "type": "LATENT", "link": 124, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [91], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 50, 7.5, "euler", "normal", 1]}, {"id": 54, "type": "VAEDecode", "pos": [1921, 38], "size": {"0": 210, "1": 46}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 91}, {"name": "vae", "type": "VAE", "link": 92}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [93], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 58, "type": "LoadImage", "pos": [10, 404], "size": {"0": 646.0000610351562, "1": 703.5999755859375}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [130], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image (1).jpg", "image"]}, {"id": 59, "type": "LoadImageMask", "pos": [689, 601], "size": {"0": 315, "1": 318}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "MASK", "type": "MASK", "links": [131], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "LoadImageMask"}, "widgets_values": ["test_mask (3).jpg", "red", "image"]}, {"id": 62, "type": "BrushNet", "pos": [1102, 136], "size": {"0": 315, "1": 226}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 125}, {"name": "vae", "type": "VAE", "link": 126}, {"name": "image", "type": "IMAGE", "link": 130}, {"name": "mask", "type": "MASK", "link": 131}, {"name": "brushnet", "type": "BRMODEL", "link": 129}, {"name": "positive", "type": "CONDITIONING", "link": 127}, {"name": "negative", "type": "CONDITIONING", "link": 128}], "outputs": [{"name": "model", "type": "MODEL", "links": [121], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [122], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [123], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [124], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [1, 0, 10000]}], "links": [[78, 47, 1, 49, 0, "CLIP"], [80, 47, 1, 50, 0, "CLIP"], [91, 52, 0, 54, 0, "LATENT"], [92, 47, 2, 54, 1, "VAE"], [93, 54, 0, 12, 0, "IMAGE"], [121, 62, 0, 52, 0, "MODEL"], [122, 62, 1, 52, 1, "CONDITIONING"], [123, 62, 2, 52, 2, "CONDITIONING"], [124, 62, 3, 52, 3, "LATENT"], [125, 47, 0, 62, 0, "MODEL"], [126, 47, 2, 62, 1, "VAE"], [127, 49, 0, 62, 5, "CONDITIONING"], [128, 50, 0, 62, 6, "CONDITIONING"], [129, 45, 0, 62, 4, "BRMODEL"], [130, 58, 0, 62, 2, "IMAGE"], [131, 59, 0, 62, 3, "MASK"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_basic.png ADDED

Git LFS Details

  • SHA256: c604f5564846eae5683e7876aa9821fb9e69f012df80019f97f0a6aafbfe43a6
  • Pointer size: 132 Bytes
  • Size of remote file: 1.97 MB
example/BrushNet_cut_for_inpaint.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 74, "last_link_id": 147, "nodes": [{"id": 45, "type": "BrushNetLoader", "pos": [8, 251], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [129], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask.safetensors", "float16"]}, {"id": 12, "type": "PreviewImage", "pos": [1963, 148], "size": [362.71480126953156, 313.34364410400406], "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 93}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 54, "type": "VAEDecode", "pos": [1964, 23], "size": {"0": 210, "1": 46}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 91}, {"name": "vae", "type": "VAE", "link": 92}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [93, 142], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 71, "type": "CutForInpaint", "pos": [756, 333], "size": {"0": 315, "1": 122}, "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 138}, {"name": "mask", "type": "MASK", "link": 139}], "outputs": [{"name": "image", "type": "IMAGE", "links": [140], "shape": 3, "slot_index": 0}, {"name": "mask", "type": "MASK", "links": [141, 144], "shape": 3, "slot_index": 1}, {"name": "origin", "type": "VECTOR", "links": [145], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CutForInpaint"}, "widgets_values": [512, 512]}, {"id": 58, "type": "LoadImage", "pos": [10, 404], "size": [695.4412421875002, 781.0468775024417], "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [138, 143, 147], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [139], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["clipspace/clipspace-mask-2517487.png [input]", "image"]}, {"id": 52, "type": "KSampler", "pos": [1617, 131], "size": {"0": 315, "1": 262}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 121}, {"name": "positive", "type": "CONDITIONING", "link": 122}, {"name": "negative", "type": "CONDITIONING", "link": 123}, {"name": "latent_image", "type": "LATENT", "link": 124, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [91], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 20, 8, "euler_ancestral", "normal", 1]}, {"id": 74, "type": "Reroute", "pos": [736.4412231445312, 336.93898856946777], "size": [75, 26], "flags": {}, "order": 3, "mode": 0, "inputs": [{"name": "", "type": "*", "link": 147}], "outputs": [{"name": "", "type": "IMAGE", "links": null}], "properties": {"showOutputText": false, "horizontal": false}}, {"id": 62, "type": "BrushNet", "pos": [1254, 134], "size": {"0": 315, "1": 226}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 125}, {"name": "vae", "type": "VAE", "link": 126}, {"name": "image", "type": "IMAGE", "link": 140}, {"name": "mask", "type": "MASK", "link": 141}, {"name": "brushnet", "type": "BRMODEL", "link": 129}, {"name": "positive", "type": "CONDITIONING", "link": 127}, {"name": "negative", "type": "CONDITIONING", "link": 128}], "outputs": [{"name": "model", "type": "MODEL", "links": [121], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [122], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [123], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [124], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [0.8, 0, 10000]}, {"id": 50, "type": "CLIPTextEncode", "pos": [651, 168], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 80}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [128], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [3, 44], "size": {"0": 481, "1": 158}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [125], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [78, 80], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [92, 126], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["SD15/toonyou_beta6.safetensors"]}, {"id": 49, "type": "CLIPTextEncode", "pos": [649, 21], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 78}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [127], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["a clear blue sky"], "color": "#232", "bgcolor": "#353"}, {"id": 72, "type": "BlendInpaint", "pos": [1385, 616], "size": {"0": 315, "1": 142}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "inpaint", "type": "IMAGE", "link": 142}, {"name": "original", "type": "IMAGE", "link": 143}, {"name": "mask", "type": "MASK", "link": 144}, {"name": "origin", "type": "VECTOR", "link": 145}], "outputs": [{"name": "image", "type": "IMAGE", "links": [146], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "BlendInpaint"}, "widgets_values": [10, 10]}, {"id": 73, "type": "PreviewImage", "pos": [1784, 511], "size": [578.8481262207033, 616.0670013427734], "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 146}], "properties": {"Node name for S&R": "PreviewImage"}}], "links": [[78, 47, 1, 49, 0, "CLIP"], [80, 47, 1, 50, 0, "CLIP"], [91, 52, 0, 54, 0, "LATENT"], [92, 47, 2, 54, 1, "VAE"], [93, 54, 0, 12, 0, "IMAGE"], [121, 62, 0, 52, 0, "MODEL"], [122, 62, 1, 52, 1, "CONDITIONING"], [123, 62, 2, 52, 2, "CONDITIONING"], [124, 62, 3, 52, 3, "LATENT"], [125, 47, 0, 62, 0, "MODEL"], [126, 47, 2, 62, 1, "VAE"], [127, 49, 0, 62, 5, "CONDITIONING"], [128, 50, 0, 62, 6, "CONDITIONING"], [129, 45, 0, 62, 4, "BRMODEL"], [138, 58, 0, 71, 0, "IMAGE"], [139, 58, 1, 71, 1, "MASK"], [140, 71, 0, 62, 2, "IMAGE"], [141, 71, 1, 62, 3, "MASK"], [142, 54, 0, 72, 0, "IMAGE"], [143, 58, 0, 72, 1, "IMAGE"], [144, 71, 1, 72, 2, "MASK"], [145, 71, 2, 72, 3, "VECTOR"], [146, 72, 0, 73, 0, "IMAGE"], [147, 58, 0, 74, 0, "*"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_cut_for_inpaint.png ADDED

Git LFS Details

  • SHA256: 89010f64c2d9b1a339c17708b56b1e6bc6dd3866f4c9b01757aa071d54f772b8
  • Pointer size: 132 Bytes
  • Size of remote file: 2.37 MB
example/BrushNet_image_batch.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 18, "last_link_id": 24, "nodes": [{"id": 6, "type": "SAMModelLoader (segment anything)", "pos": [329, 68], "size": [347.87583007145474, 58], "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "SAM_MODEL", "type": "SAM_MODEL", "links": [2], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "SAMModelLoader (segment anything)"}, "widgets_values": ["sam_vit_h (2.56GB)"]}, {"id": 4, "type": "GroundingDinoModelLoader (segment anything)", "pos": [324, 175], "size": [361.20001220703125, 58], "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "GROUNDING_DINO_MODEL", "type": "GROUNDING_DINO_MODEL", "links": [3], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "GroundingDinoModelLoader (segment anything)"}, "widgets_values": ["GroundingDINO_SwinT_OGC (694MB)"]}, {"id": 10, "type": "BrushNetLoader", "pos": [338, 744], "size": {"0": 315, "1": 82}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [7], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask.safetensors", "float16"]}, {"id": 12, "type": "CLIPTextEncode", "pos": [805, 922], "size": [393.06744384765625, 101.02725219726562], "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 9}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [11], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["burger"]}, {"id": 11, "type": "CLIPTextEncode", "pos": [810, 786], "size": [388.26751708984375, 88.82723999023438], "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 8}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [10], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""]}, {"id": 9, "type": "BrushNet", "pos": [1279, 577], "size": {"0": 315, "1": 226}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 6}, {"name": "vae", "type": "VAE", "link": 12}, {"name": "image", "type": "IMAGE", "link": 13}, {"name": "mask", "type": "MASK", "link": 14}, {"name": "brushnet", "type": "BRMODEL", "link": 7}, {"name": "positive", "type": "CONDITIONING", "link": 10}, {"name": "negative", "type": "CONDITIONING", "link": 11}], "outputs": [{"name": "model", "type": "MODEL", "links": [15], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [16], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [17], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [18], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [1, 0, 10000]}, {"id": 8, "type": "CheckpointLoaderSimple", "pos": [333, 574], "size": [404.79998779296875, 98], "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [6], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [8, 9], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [12, 21], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 14, "type": "VAEDecode", "pos": [2049, 464], "size": {"0": 210, "1": 46}, "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 19}, {"name": "vae", "type": "VAE", "link": 21}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [20], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 15, "type": "PreviewImage", "pos": [2273, 575], "size": [394.86773681640625, 360.6271057128906], "flags": {}, "order": 14, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 20}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 13, "type": "KSampler", "pos": [1709, 576], "size": {"0": 315, "1": 262}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 15}, {"name": "positive", "type": "CONDITIONING", "link": 16}, {"name": "negative", "type": "CONDITIONING", "link": 17}, {"name": "latent_image", "type": "LATENT", "link": 18}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [19], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 20, 8, "euler", "normal", 1]}, {"id": 2, "type": "VHS_LoadImagesPath", "pos": [334, 306], "size": [226.8000030517578, 194], "flags": {}, "order": 4, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [4, 13, 22], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}, {"name": "INT", "type": "INT", "links": null, "shape": 3}], "properties": {"Node name for S&R": "VHS_LoadImagesPath"}, "widgets_values": {"directory": "./output/", "image_load_cap": 6, "skip_first_images": 0, "select_every_nth": 1, "choose folder to upload": "image", "videopreview": {"hidden": false, "paused": false, "params": {"frame_load_cap": 6, "skip_first_images": 0, "filename": "./output/", "type": "path", "format": "folder", "select_every_nth": 1}}}}, {"id": 5, "type": "GroundingDinoSAMSegment (segment anything)", "pos": [997, 71], "size": [352.79998779296875, 122], "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "sam_model", "type": "SAM_MODEL", "link": 2}, {"name": "grounding_dino_model", "type": "GROUNDING_DINO_MODEL", "link": 3}, {"name": "image", "type": "IMAGE", "link": 4}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [14, 23], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GroundingDinoSAMSegment (segment anything)"}, "widgets_values": ["burger", 0.3]}, {"id": 17, "type": "MaskToImage", "pos": [1424, 90], "size": {"0": 210, "1": 26}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "mask", "type": "MASK", "link": 23}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [24], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "MaskToImage"}}, {"id": 16, "type": "PreviewImage", "pos": [782, 255], "size": [379.2693328857422, 273.5831527709961], "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 22}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 18, "type": "PreviewImage", "pos": [1734, 90], "size": [353.90962829589853, 245.8631393432617], "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 24}], "properties": {"Node name for S&R": "PreviewImage"}}], "links": [[2, 6, 0, 5, 0, "SAM_MODEL"], [3, 4, 0, 5, 1, "GROUNDING_DINO_MODEL"], [4, 2, 0, 5, 2, "IMAGE"], [6, 8, 0, 9, 0, "MODEL"], [7, 10, 0, 9, 4, "BRMODEL"], [8, 8, 1, 11, 0, "CLIP"], [9, 8, 1, 12, 0, "CLIP"], [10, 11, 0, 9, 5, "CONDITIONING"], [11, 12, 0, 9, 6, "CONDITIONING"], [12, 8, 2, 9, 1, "VAE"], [13, 2, 0, 9, 2, "IMAGE"], [14, 5, 1, 9, 3, "MASK"], [15, 9, 0, 13, 0, "MODEL"], [16, 9, 1, 13, 1, "CONDITIONING"], [17, 9, 2, 13, 2, "CONDITIONING"], [18, 9, 3, 13, 3, "LATENT"], [19, 13, 0, 14, 0, "LATENT"], [20, 14, 0, 15, 0, "IMAGE"], [21, 8, 2, 14, 1, "VAE"], [22, 2, 0, 16, 0, "IMAGE"], [23, 5, 1, 17, 0, "MASK"], [24, 17, 0, 18, 0, "IMAGE"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_image_batch.png ADDED

Git LFS Details

  • SHA256: 704fe979477f356f52c8dc5922ebdef0eb196668056f3345967ad0df0d45a3a4
  • Pointer size: 132 Bytes
  • Size of remote file: 1.16 MB
example/BrushNet_image_big_batch.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 21, "last_link_id": 29, "nodes": [{"id": 6, "type": "SAMModelLoader (segment anything)", "pos": [329, 68], "size": {"0": 347.8758239746094, "1": 58}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "SAM_MODEL", "type": "SAM_MODEL", "links": [2], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "SAMModelLoader (segment anything)"}, "widgets_values": ["sam_vit_h (2.56GB)"]}, {"id": 4, "type": "GroundingDinoModelLoader (segment anything)", "pos": [324, 175], "size": {"0": 361.20001220703125, "1": 58}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "GROUNDING_DINO_MODEL", "type": "GROUNDING_DINO_MODEL", "links": [3], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "GroundingDinoModelLoader (segment anything)"}, "widgets_values": ["GroundingDINO_SwinT_OGC (694MB)"]}, {"id": 14, "type": "VAEDecode", "pos": [2049, 464], "size": {"0": 210, "1": 46}, "flags": {}, "order": 14, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 19}, {"name": "vae", "type": "VAE", "link": 21}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [20], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 15, "type": "PreviewImage", "pos": [2273, 575], "size": {"0": 394.86773681640625, "1": 360.6271057128906}, "flags": {}, "order": 15, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 20}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 13, "type": "KSampler", "pos": [1709, 576], "size": {"0": 315, "1": 262}, "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 15}, {"name": "positive", "type": "CONDITIONING", "link": 16}, {"name": "negative", "type": "CONDITIONING", "link": 17}, {"name": "latent_image", "type": "LATENT", "link": 18}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [19], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 20, 8, "euler", "normal", 1]}, {"id": 17, "type": "MaskToImage", "pos": [1424, 90], "size": {"0": 210, "1": 26}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "mask", "type": "MASK", "link": 23}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [24], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "MaskToImage"}}, {"id": 18, "type": "PreviewImage", "pos": [1734, 90], "size": [353.9096374511719, 246], "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 24}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 20, "type": "ADE_UseEvolvedSampling", "pos": [829, 579], "size": {"0": 315, "1": 118}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 26, "slot_index": 0}, {"name": "m_models", "type": "M_MODELS", "link": null}, {"name": "context_options", "type": "CONTEXT_OPTIONS", "link": 27}, {"name": "sample_settings", "type": "SAMPLE_SETTINGS", "link": null}], "outputs": [{"name": "MODEL", "type": "MODEL", "links": [25], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "ADE_UseEvolvedSampling"}, "widgets_values": ["autoselect"]}, {"id": 21, "type": "VHS_LoadVideoPath", "pos": [337, 275], "size": [315, 238], "flags": {}, "order": 2, "mode": 0, "inputs": [{"name": "meta_batch", "type": "VHS_BatchManager", "link": null}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [28, 29], "shape": 3, "slot_index": 0}, {"name": "frame_count", "type": "INT", "links": null, "shape": 3}, {"name": "audio", "type": "VHS_AUDIO", "links": null, "shape": 3}, {"name": "video_info", "type": "VHS_VIDEOINFO", "links": null, "shape": 3}], "properties": {"Node name for S&R": "VHS_LoadVideoPath"}, "widgets_values": {"video": "./input/AnimateDiff.mp4", "force_rate": 0, "force_size": "Disabled", "custom_width": 512, "custom_height": 512, "frame_load_cap": 0, "skip_first_frames": 0, "select_every_nth": 1, "videopreview": {"hidden": false, "paused": false, "params": {"frame_load_cap": 0, "skip_first_frames": 0, "force_rate": 0, "filename": "./input/AnimateDiff.mp4", "type": "path", "format": "video/mp4", "select_every_nth": 1}}}}, {"id": 5, "type": "GroundingDinoSAMSegment (segment anything)", "pos": [997, 71], "size": {"0": 352.79998779296875, "1": 122}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "sam_model", "type": "SAM_MODEL", "link": 2}, {"name": "grounding_dino_model", "type": "GROUNDING_DINO_MODEL", "link": 3}, {"name": "image", "type": "IMAGE", "link": 28}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [14, 23], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GroundingDinoSAMSegment (segment anything)"}, "widgets_values": ["tree", 0.3]}, {"id": 19, "type": "ADE_StandardStaticContextOptions", "pos": [335, 557], "size": {"0": 317.4000244140625, "1": 198}, "flags": {}, "order": 3, "mode": 0, "inputs": [{"name": "prev_context", "type": "CONTEXT_OPTIONS", "link": null}, {"name": "view_opts", "type": "VIEW_OPTS", "link": null}], "outputs": [{"name": "CONTEXT_OPTS", "type": "CONTEXT_OPTIONS", "links": [27], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "ADE_StandardStaticContextOptions"}, "widgets_values": [8, 4, "pyramid", false, 0, 1]}, {"id": 11, "type": "CLIPTextEncode", "pos": [838, 808], "size": {"0": 388.26751708984375, "1": 88.82723999023438}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 8}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [10], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["mountains"], "color": "#232", "bgcolor": "#353"}, {"id": 12, "type": "CLIPTextEncode", "pos": [833, 966], "size": {"0": 393.06744384765625, "1": 101.02725219726562}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 9}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [11], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 10, "type": "BrushNetLoader", "pos": [332, 1013], "size": {"0": 315, "1": 82}, "flags": {}, "order": 4, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [7], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask.safetensors", "float16"]}, {"id": 8, "type": "CheckpointLoaderSimple", "pos": [319, 822], "size": {"0": 404.79998779296875, "1": 98}, "flags": {}, "order": 5, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [26], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [8, 9], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [12, 21], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["SD15/realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 9, "type": "BrushNet", "pos": [1279, 577], "size": {"0": 315, "1": 226}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 25}, {"name": "vae", "type": "VAE", "link": 12}, {"name": "image", "type": "IMAGE", "link": 29, "slot_index": 2}, {"name": "mask", "type": "MASK", "link": 14}, {"name": "brushnet", "type": "BRMODEL", "link": 7}, {"name": "positive", "type": "CONDITIONING", "link": 10}, {"name": "negative", "type": "CONDITIONING", "link": 11}], "outputs": [{"name": "model", "type": "MODEL", "links": [15], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [16], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [17], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [18], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [1, 0, 10000]}], "links": [[2, 6, 0, 5, 0, "SAM_MODEL"], [3, 4, 0, 5, 1, "GROUNDING_DINO_MODEL"], [7, 10, 0, 9, 4, "BRMODEL"], [8, 8, 1, 11, 0, "CLIP"], [9, 8, 1, 12, 0, "CLIP"], [10, 11, 0, 9, 5, "CONDITIONING"], [11, 12, 0, 9, 6, "CONDITIONING"], [12, 8, 2, 9, 1, "VAE"], [14, 5, 1, 9, 3, "MASK"], [15, 9, 0, 13, 0, "MODEL"], [16, 9, 1, 13, 1, "CONDITIONING"], [17, 9, 2, 13, 2, "CONDITIONING"], [18, 9, 3, 13, 3, "LATENT"], [19, 13, 0, 14, 0, "LATENT"], [20, 14, 0, 15, 0, "IMAGE"], [21, 8, 2, 14, 1, "VAE"], [23, 5, 1, 17, 0, "MASK"], [24, 17, 0, 18, 0, "IMAGE"], [25, 20, 0, 9, 0, "MODEL"], [26, 8, 0, 20, 0, "MODEL"], [27, 19, 0, 20, 2, "CONTEXT_OPTIONS"], [28, 21, 0, 5, 2, "IMAGE"], [29, 21, 0, 9, 2, "IMAGE"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_image_big_batch.png ADDED
example/BrushNet_inpaint.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 61, "last_link_id": 117, "nodes": [{"id": 12, "type": "PreviewImage", "pos": [2049, 50], "size": {"0": 523.5944213867188, "1": 547.4853515625}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 92}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 56, "type": "VAEDecode", "pos": [1805, 54], "size": {"0": 210, "1": 46}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 91}, {"name": "vae", "type": "VAE", "link": 97}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [92, 95], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 57, "type": "BlendInpaint", "pos": [1532, 734], "size": {"0": 315, "1": 122}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "inpaint", "type": "IMAGE", "link": 95}, {"name": "original", "type": "IMAGE", "link": 94}, {"name": "mask", "type": "MASK", "link": 117}], "outputs": [{"name": "image", "type": "IMAGE", "links": [96], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "BlendInpaint"}, "widgets_values": [10, 10]}, {"id": 58, "type": "PreviewImage", "pos": [2052, 646], "size": {"0": 509.60009765625, "1": 539.2001953125}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 96}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 49, "type": "CLIPTextEncode", "pos": [698, 274], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 78}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [104], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["closeup photo of white goat head"], "color": "#232", "bgcolor": "#353"}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [109, 40], "size": {"0": 481, "1": 158}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [103], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [78, 80], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [97, 109], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 1, "type": "LoadImage", "pos": [101, 386], "size": {"0": 470.19439697265625, "1": 578.6854248046875}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [94, 112], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image2 (1).png", "image"]}, {"id": 53, "type": "LoadImageMask", "pos": [612, 638], "size": {"0": 315, "1": 318}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "MASK", "type": "MASK", "links": [116, 117], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "LoadImageMask"}, "widgets_values": ["test_mask2 (1).png", "red", "image"]}, {"id": 45, "type": "BrushNetLoader", "pos": [49, 238], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [110], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask.safetensors", "float16"]}, {"id": 59, "type": "BrushNet", "pos": [1088, 46], "size": {"0": 315, "1": 246}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 103, "slot_index": 0}, {"name": "vae", "type": "VAE", "link": 109}, {"name": "image", "type": "IMAGE", "link": 112}, {"name": "mask", "type": "MASK", "link": 116}, {"name": "brushnet", "type": "BRMODEL", "link": 110}, {"name": "positive", "type": "CONDITIONING", "link": 104}, {"name": "negative", "type": "CONDITIONING", "link": 105}, {"name": "clip", "type": "PPCLIP", "link": null}], "outputs": [{"name": "model", "type": "MODEL", "links": [102], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [108], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [107], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [106], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [0.8, 0, 10000]}, {"id": 50, "type": "CLIPTextEncode", "pos": [700, 444], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 80}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [105], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["text, grass, deformed, pink, blue, horns"], "color": "#322", "bgcolor": "#533"}, {"id": 54, "type": "KSampler", "pos": [1449, 44], "size": {"0": 315, "1": 262}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 102}, {"name": "positive", "type": "CONDITIONING", "link": 108}, {"name": "negative", "type": "CONDITIONING", "link": 107}, {"name": "latent_image", "type": "LATENT", "link": 106, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [91], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 20, 5, "euler_ancestral", "normal", 1]}], "links": [[78, 47, 1, 49, 0, "CLIP"], [80, 47, 1, 50, 0, "CLIP"], [91, 54, 0, 56, 0, "LATENT"], [92, 56, 0, 12, 0, "IMAGE"], [94, 1, 0, 57, 1, "IMAGE"], [95, 56, 0, 57, 0, "IMAGE"], [96, 57, 0, 58, 0, "IMAGE"], [97, 47, 2, 56, 1, "VAE"], [102, 59, 0, 54, 0, "MODEL"], [103, 47, 0, 59, 0, "MODEL"], [104, 49, 0, 59, 5, "CONDITIONING"], [105, 50, 0, 59, 6, "CONDITIONING"], [106, 59, 3, 54, 3, "LATENT"], [107, 59, 2, 54, 2, "CONDITIONING"], [108, 59, 1, 54, 1, "CONDITIONING"], [109, 47, 2, 59, 1, "VAE"], [110, 45, 0, 59, 4, "BRMODEL"], [112, 1, 0, 59, 2, "IMAGE"], [116, 53, 0, 59, 3, "MASK"], [117, 53, 0, 57, 2, "MASK"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_inpaint.png ADDED

Git LFS Details

  • SHA256: ae5198be444315129712a7938414215aa105895cbc711493423a9250a1368496
  • Pointer size: 132 Bytes
  • Size of remote file: 1.57 MB
example/BrushNet_with_CN.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 60, "last_link_id": 115, "nodes": [{"id": 54, "type": "VAEDecode", "pos": [1868, 82], "size": {"0": 210, "1": 46}, "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 91}, {"name": "vae", "type": "VAE", "link": 92}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [93], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 12, "type": "PreviewImage", "pos": [1624, 422], "size": {"0": 523.5944213867188, "1": 547.4853515625}, "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 93}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 56, "type": "ControlNetLoader", "pos": [-87, -117], "size": {"0": 437.9234313964844, "1": 79.99897766113281}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "CONTROL_NET", "type": "CONTROL_NET", "links": [96], "shape": 3}], "properties": {"Node name for S&R": "ControlNetLoader"}, "widgets_values": ["control-scribble.safetensors"]}, {"id": 57, "type": "LoadImage", "pos": [415, -339], "size": {"0": 315, "1": 314}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [97], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_cn.png", "image"]}, {"id": 49, "type": "CLIPTextEncode", "pos": [411, 23], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 78}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [94], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["red car model on a wooden table"], "color": "#232", "bgcolor": "#353"}, {"id": 52, "type": "KSampler", "pos": [1497, 69], "size": {"0": 315, "1": 262}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 103}, {"name": "positive", "type": "CONDITIONING", "link": 104}, {"name": "negative", "type": "CONDITIONING", "link": 105}, {"name": "latent_image", "type": "LATENT", "link": 106, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [91], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 20, 6, "euler_ancestral", "exponential", 1]}, {"id": 55, "type": "ControlNetApply", "pos": [795, -65], "size": {"0": 317.4000244140625, "1": 98}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "conditioning", "type": "CONDITIONING", "link": 94}, {"name": "control_net", "type": "CONTROL_NET", "link": 96, "slot_index": 1}, {"name": "image", "type": "IMAGE", "link": 97}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [107], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "ControlNetApply"}, "widgets_values": [0.8]}, {"id": 50, "type": "CLIPTextEncode", "pos": [704, 415], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 80}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [108], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["stand, furniture, cover"], "color": "#322", "bgcolor": "#533"}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [-109, 15], "size": {"0": 481, "1": 158}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [110], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [78, 80], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [92, 109], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 1, "type": "LoadImage", "pos": [101, 386], "size": {"0": 470.19439697265625, "1": 578.6854248046875}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [112], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image.jpg", "image"]}, {"id": 58, "type": "LoadImageMask", "pos": [640, 604], "size": {"0": 315, "1": 318.0000305175781}, "flags": {}, "order": 4, "mode": 0, "outputs": [{"name": "MASK", "type": "MASK", "links": [114], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "LoadImageMask"}, "widgets_values": ["test_mask (6).jpg", "red", "image"]}, {"id": 60, "type": "GrowMask", "pos": [997, 602], "size": {"0": 315, "1": 82}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "mask", "type": "MASK", "link": 114}], "outputs": [{"name": "MASK", "type": "MASK", "links": [115], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "GrowMask"}, "widgets_values": [10, true]}, {"id": 59, "type": "BrushNet", "pos": [1140, 63], "size": {"0": 315, "1": 246}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 110}, {"name": "vae", "type": "VAE", "link": 109}, {"name": "image", "type": "IMAGE", "link": 112}, {"name": "mask", "type": "MASK", "link": 115}, {"name": "brushnet", "type": "BRMODEL", "link": 111}, {"name": "positive", "type": "CONDITIONING", "link": 107}, {"name": "negative", "type": "CONDITIONING", "link": 108}, {"name": "clip", "type": "PPCLIP", "link": null}], "outputs": [{"name": "model", "type": "MODEL", "links": [103], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [104], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [105], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [106], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [1, 0, 10000]}, {"id": 45, "type": "BrushNetLoader", "pos": [49, 238], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 5, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [111], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask.safetensors", "float16"]}], "links": [[78, 47, 1, 49, 0, "CLIP"], [80, 47, 1, 50, 0, "CLIP"], [91, 52, 0, 54, 0, "LATENT"], [92, 47, 2, 54, 1, "VAE"], [93, 54, 0, 12, 0, "IMAGE"], [94, 49, 0, 55, 0, "CONDITIONING"], [96, 56, 0, 55, 1, "CONTROL_NET"], [97, 57, 0, 55, 2, "IMAGE"], [103, 59, 0, 52, 0, "MODEL"], [104, 59, 1, 52, 1, "CONDITIONING"], [105, 59, 2, 52, 2, "CONDITIONING"], [106, 59, 3, 52, 3, "LATENT"], [107, 55, 0, 59, 5, "CONDITIONING"], [108, 50, 0, 59, 6, "CONDITIONING"], [109, 47, 2, 59, 1, "VAE"], [110, 47, 0, 59, 0, "MODEL"], [111, 45, 0, 59, 4, "BRMODEL"], [112, 1, 0, 59, 2, "IMAGE"], [114, 58, 0, 60, 0, "MASK"], [115, 60, 0, 59, 3, "MASK"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_with_CN.png ADDED

Git LFS Details

  • SHA256: ba0cff542aa34a8a4bfc9076d973a415b7ef908aee3bd7c2c9acba4f28120500
  • Pointer size: 132 Bytes
  • Size of remote file: 1.96 MB
example/BrushNet_with_ELLA.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 30, "last_link_id": 53, "nodes": [{"id": 8, "type": "SetEllaTimesteps", "pos": [511, 344], "size": {"0": 315, "1": 146}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 4}, {"name": "ella", "type": "ELLA", "link": 3}, {"name": "sigmas", "type": "SIGMAS", "link": null}], "outputs": [{"name": "ELLA", "type": "ELLA", "links": [14, 15], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "SetEllaTimesteps"}, "widgets_values": ["normal", 20, 1]}, {"id": 2, "type": "ELLALoader", "pos": [89, 389], "size": {"0": 315, "1": 58}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "ELLA", "type": "ELLA", "links": [3], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "ELLALoader"}, "widgets_values": ["ella-sd1.5-tsc-t5xl.safetensors"]}, {"id": 1, "type": "CheckpointLoaderSimple", "pos": [8, 216], "size": {"0": 396.80010986328125, "1": 98}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [4, 21], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [8, 10], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [17, 23], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 11, "type": "EllaTextEncode", "pos": [910, 722], "size": {"0": 400, "1": 200}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "ella", "type": "ELLA", "link": 15, "slot_index": 0}, {"name": "text_encoder", "type": "T5_TEXT_ENCODER", "link": 11, "slot_index": 1}, {"name": "clip", "type": "CLIP", "link": 10}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [25], "shape": 3, "slot_index": 0}, {"name": "CLIP CONDITIONING", "type": "CONDITIONING", "links": null, "shape": 3}], "properties": {"Node name for S&R": "EllaTextEncode"}, "widgets_values": ["", ""], "color": "#322", "bgcolor": "#533"}, {"id": 13, "type": "PreviewImage", "pos": [2135, 220], "size": {"0": 389.20013427734375, "1": 413.4000549316406}, "flags": {}, "order": 18, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 53}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 3, "type": "T5TextEncoderLoader #ELLA", "pos": [83, 516], "size": {"0": 315, "1": 106}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "T5_TEXT_ENCODER", "type": "T5_TEXT_ENCODER", "links": [7, 11], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "T5TextEncoderLoader #ELLA"}, "widgets_values": ["models--google--flan-t5-xl--text_encoder", 0, "auto"]}, {"id": 16, "type": "BrushNetLoader", "pos": [970, 328], "size": {"0": 315, "1": 82}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [20], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask.safetensors", "float16"]}, {"id": 17, "type": "LoadImage", "pos": [58, -192], "size": [315, 314], "flags": {}, "order": 4, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [31], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["clipspace/clipspace-mask-1011527.png [input]", "image"]}, {"id": 23, "type": "SAMModelLoader (segment anything)", "pos": [415, -27], "size": [373.11944580078125, 58], "flags": {}, "order": 5, "mode": 0, "outputs": [{"name": "SAM_MODEL", "type": "SAM_MODEL", "links": [43], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "SAMModelLoader (segment anything)"}, "widgets_values": ["sam_vit_h (2.56GB)"]}, {"id": 26, "type": "GroundingDinoModelLoader (segment anything)", "pos": [428, 74], "size": [361.20001220703125, 63.59926813298682], "flags": {}, "order": 6, "mode": 0, "outputs": [{"name": "GROUNDING_DINO_MODEL", "type": "GROUNDING_DINO_MODEL", "links": [44], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "GroundingDinoModelLoader (segment anything)"}, "widgets_values": ["GroundingDINO_SwinT_OGC (694MB)"]}, {"id": 24, "type": "PreviewImage", "pos": [1504, -188], "size": [315.91949462890625, 286.26763916015625], "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 46}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 27, "type": "GroundingDinoSAMSegment (segment anything)", "pos": [830, -2], "size": [352.79998779296875, 122], "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "sam_model", "type": "SAM_MODEL", "link": 43}, {"name": "grounding_dino_model", "type": "GROUNDING_DINO_MODEL", "link": 44}, {"name": "image", "type": "IMAGE", "link": 45, "slot_index": 2}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [46], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [47], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GroundingDinoSAMSegment (segment anything)"}, "widgets_values": ["goblin toy", 0.3]}, {"id": 20, "type": "ImageTransformResizeAbsolute", "pos": [410, -185], "size": {"0": 315, "1": 106}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 31}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [32, 45, 49], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "ImageTransformResizeAbsolute"}, "widgets_values": [512, 512, "lanczos"]}, {"id": 12, "type": "VAEDecode", "pos": [2080, 95], "size": {"0": 210, "1": 46}, "flags": {}, "order": 16, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 16}, {"name": "vae", "type": "VAE", "link": 17}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [50], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 28, "type": "InvertMask", "pos": [1201, 21], "size": {"0": 210, "1": 26}, "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "mask", "type": "MASK", "link": 47}], "outputs": [{"name": "MASK", "type": "MASK", "links": [48, 51], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "InvertMask"}}, {"id": 29, "type": "BlendInpaint", "pos": [1667, 626], "size": {"0": 315, "1": 122}, "flags": {}, "order": 17, "mode": 0, "inputs": [{"name": "inpaint", "type": "IMAGE", "link": 50}, {"name": "original", "type": "IMAGE", "link": 49}, {"name": "mask", "type": "MASK", "link": 51}], "outputs": [{"name": "image", "type": "IMAGE", "links": [53], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "BlendInpaint"}, "widgets_values": [10, 10]}, {"id": 10, "type": "EllaTextEncode", "pos": [911, 473], "size": {"0": 400, "1": 200}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "ella", "type": "ELLA", "link": 14}, {"name": "text_encoder", "type": "T5_TEXT_ENCODER", "link": 7}, {"name": "clip", "type": "CLIP", "link": 8}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [24], "shape": 3, "slot_index": 0}, {"name": "CLIP CONDITIONING", "type": "CONDITIONING", "links": null, "shape": 3}], "properties": {"Node name for S&R": "EllaTextEncode"}, "widgets_values": ["wargaming shop showcase with miniatures", ""], "color": "#232", "bgcolor": "#353"}, {"id": 15, "type": "BrushNet", "pos": [1434, 215], "size": {"0": 315, "1": 226}, "flags": {}, "order": 14, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 21}, {"name": "vae", "type": "VAE", "link": 23}, {"name": "image", "type": "IMAGE", "link": 32}, {"name": "mask", "type": "MASK", "link": 48}, {"name": "brushnet", "type": "BRMODEL", "link": 20}, {"name": "positive", "type": "CONDITIONING", "link": 24}, {"name": "negative", "type": "CONDITIONING", "link": 25}], "outputs": [{"name": "model", "type": "MODEL", "links": [22], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [26], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [27], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [28], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [1, 3, 10000]}, {"id": 9, "type": "KSampler", "pos": [1797, 212], "size": {"0": 315, "1": 262}, "flags": {}, "order": 15, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 22}, {"name": "positive", "type": "CONDITIONING", "link": 26}, {"name": "negative", "type": "CONDITIONING", "link": 27}, {"name": "latent_image", "type": "LATENT", "link": 28, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [16], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 15, 8, "euler_ancestral", "normal", 1]}], "links": [[3, 2, 0, 8, 1, "ELLA"], [4, 1, 0, 8, 0, "MODEL"], [7, 3, 0, 10, 1, "T5_TEXT_ENCODER"], [8, 1, 1, 10, 2, "CLIP"], [10, 1, 1, 11, 2, "CLIP"], [11, 3, 0, 11, 1, "T5_TEXT_ENCODER"], [14, 8, 0, 10, 0, "ELLA"], [15, 8, 0, 11, 0, "ELLA"], [16, 9, 0, 12, 0, "LATENT"], [17, 1, 2, 12, 1, "VAE"], [20, 16, 0, 15, 4, "BRMODEL"], [21, 1, 0, 15, 0, "MODEL"], [22, 15, 0, 9, 0, "MODEL"], [23, 1, 2, 15, 1, "VAE"], [24, 10, 0, 15, 5, "CONDITIONING"], [25, 11, 0, 15, 6, "CONDITIONING"], [26, 15, 1, 9, 1, "CONDITIONING"], [27, 15, 2, 9, 2, "CONDITIONING"], [28, 15, 3, 9, 3, "LATENT"], [31, 17, 0, 20, 0, "IMAGE"], [32, 20, 0, 15, 2, "IMAGE"], [43, 23, 0, 27, 0, "SAM_MODEL"], [44, 26, 0, 27, 1, "GROUNDING_DINO_MODEL"], [45, 20, 0, 27, 2, "IMAGE"], [46, 27, 0, 24, 0, "IMAGE"], [47, 27, 1, 28, 0, "MASK"], [48, 28, 0, 15, 3, "MASK"], [49, 20, 0, 29, 1, "IMAGE"], [50, 12, 0, 29, 0, "IMAGE"], [51, 28, 0, 29, 2, "MASK"], [53, 29, 0, 13, 0, "IMAGE"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_with_ELLA.png ADDED

Git LFS Details

  • SHA256: a10a30feab84b57f22e419a1a53173022edda4b4e65f8c2301bc7dfaf81b6cb7
  • Pointer size: 132 Bytes
  • Size of remote file: 1.08 MB
example/BrushNet_with_IPA.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 64, "last_link_id": 137, "nodes": [{"id": 57, "type": "VAEDecode", "pos": [2009.6002197265625, 135.59999084472656], "size": {"0": 210, "1": 46}, "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 105}, {"name": "vae", "type": "VAE", "link": 107}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [106], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 12, "type": "PreviewImage", "pos": [1666, 438], "size": {"0": 523.5944213867188, "1": 547.4853515625}, "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 106}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 61, "type": "IPAdapterUnifiedLoader", "pos": [452, -96], "size": {"0": 315, "1": 78}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 116}, {"name": "ipadapter", "type": "IPADAPTER", "link": null}], "outputs": [{"name": "model", "type": "MODEL", "links": [117], "shape": 3, "slot_index": 0}, {"name": "ipadapter", "type": "IPADAPTER", "links": [115], "shape": 3}], "properties": {"Node name for S&R": "IPAdapterUnifiedLoader"}, "widgets_values": ["STANDARD (medium strength)"]}, {"id": 60, "type": "LoadImage", "pos": [65, -355], "size": {"0": 315, "1": 314}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [112], "shape": 3}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["ComfyUI_temp_mynbi_00021_ (1).png", "image"]}, {"id": 58, "type": "IPAdapter", "pos": [807, -100], "size": {"0": 315, "1": 190}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 117}, {"name": "ipadapter", "type": "IPADAPTER", "link": 115, "slot_index": 1}, {"name": "image", "type": "IMAGE", "link": 112, "slot_index": 2}, {"name": "attn_mask", "type": "MASK", "link": null}], "outputs": [{"name": "MODEL", "type": "MODEL", "links": [124], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "IPAdapter"}, "widgets_values": [1, 0, 1, "style transfer"]}, {"id": 50, "type": "CLIPTextEncode", "pos": [740, 373], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 114}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [127], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [-71, 21], "size": {"0": 481, "1": 158}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [116], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [114, 132], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [107, 131], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 49, "type": "CLIPTextEncode", "pos": [736, 215], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 132}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [126], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["glowing bowl"], "color": "#232", "bgcolor": "#353"}, {"id": 1, "type": "LoadImage", "pos": [101, 386], "size": {"0": 470.19439697265625, "1": 578.6854248046875}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [134], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image.jpg", "image"]}, {"id": 55, "type": "KSampler", "pos": [1628.000244140625, 69.19998931884766], "size": {"0": 315, "1": 262}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 125}, {"name": "positive", "type": "CONDITIONING", "link": 128}, {"name": "negative", "type": "CONDITIONING", "link": 129}, {"name": "latent_image", "type": "LATENT", "link": 130, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [105], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [1, "fixed", 20, 7, "euler_ancestral", "normal", 1]}, {"id": 63, "type": "LoadImageMask", "pos": [601, 634], "size": {"0": 315, "1": 318}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "MASK", "type": "MASK", "links": [136], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "LoadImageMask"}, "widgets_values": ["test_mask (4).jpg", "red", "image"]}, {"id": 64, "type": "GrowMask", "pos": [946, 633], "size": {"0": 315, "1": 82}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "mask", "type": "MASK", "link": 136}], "outputs": [{"name": "MASK", "type": "MASK", "links": [137], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "GrowMask"}, "widgets_values": [10, true]}, {"id": 62, "type": "BrushNet", "pos": [1209, 14], "size": {"0": 315, "1": 246}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 124}, {"name": "vae", "type": "VAE", "link": 131}, {"name": "image", "type": "IMAGE", "link": 134}, {"name": "mask", "type": "MASK", "link": 137}, {"name": "brushnet", "type": "BRMODEL", "link": 133}, {"name": "positive", "type": "CONDITIONING", "link": 126}, {"name": "negative", "type": "CONDITIONING", "link": 127}, {"name": "clip", "type": "PPCLIP", "link": null}], "outputs": [{"name": "model", "type": "MODEL", "links": [125], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [128], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [129], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [130], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [1, 0, 10000]}, {"id": 45, "type": "BrushNetLoader", "pos": [49, 238], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 4, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [133], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask.safetensors", "float16"]}], "links": [[105, 55, 0, 57, 0, "LATENT"], [106, 57, 0, 12, 0, "IMAGE"], [107, 47, 2, 57, 1, "VAE"], [112, 60, 0, 58, 2, "IMAGE"], [114, 47, 1, 50, 0, "CLIP"], [115, 61, 1, 58, 1, "IPADAPTER"], [116, 47, 0, 61, 0, "MODEL"], [117, 61, 0, 58, 0, "MODEL"], [124, 58, 0, 62, 0, "MODEL"], [125, 62, 0, 55, 0, "MODEL"], [126, 49, 0, 62, 5, "CONDITIONING"], [127, 50, 0, 62, 6, "CONDITIONING"], [128, 62, 1, 55, 1, "CONDITIONING"], [129, 62, 2, 55, 2, "CONDITIONING"], [130, 62, 3, 55, 3, "LATENT"], [131, 47, 2, 62, 1, "VAE"], [132, 47, 1, 49, 0, "CLIP"], [133, 45, 0, 62, 4, "BRMODEL"], [134, 1, 0, 62, 2, "IMAGE"], [136, 63, 0, 64, 0, "MASK"], [137, 64, 0, 62, 3, "MASK"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_with_IPA.png ADDED

Git LFS Details

  • SHA256: f82c6420f6987eb82434c03ff3c0e600de47d9854dab8053becb5dbe7f98ac67
  • Pointer size: 132 Bytes
  • Size of remote file: 2.32 MB
example/BrushNet_with_LoRA.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 59, "last_link_id": 123, "nodes": [{"id": 57, "type": "VAEDecode", "pos": [2009.6002197265625, 135.59999084472656], "size": {"0": 210, "1": 46}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 105}, {"name": "vae", "type": "VAE", "link": 107}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [106], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 12, "type": "PreviewImage", "pos": [1666, 438], "size": {"0": 523.5944213867188, "1": 547.4853515625}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 106}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 55, "type": "KSampler", "pos": [1628.000244140625, 69.19998931884766], "size": {"0": 315, "1": 262}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 113}, {"name": "positive", "type": "CONDITIONING", "link": 114}, {"name": "negative", "type": "CONDITIONING", "link": 115}, {"name": "latent_image", "type": "LATENT", "link": 116, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [105], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 30, 7, "euler_ancestral", "normal", 1]}, {"id": 51, "type": "LoraLoader", "pos": [641, 43], "size": {"0": 315, "1": 126}, "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 82}, {"name": "clip", "type": "CLIP", "link": 83}], "outputs": [{"name": "MODEL", "type": "MODEL", "links": [117], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [94, 95], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoraLoader"}, "widgets_values": ["glasssculpture_v8.safetensors", 1, 1]}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [109, 40], "size": {"0": 481, "1": 158}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [82], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [83], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [107, 118], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 50, "type": "CLIPTextEncode", "pos": [883, 427], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 95}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [121], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 1, "type": "LoadImage", "pos": [101, 386], "size": {"0": 470.19439697265625, "1": 578.6854248046875}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [122], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image.jpg", "image"]}, {"id": 58, "type": "LoadImageMask", "pos": [611, 646], "size": {"0": 315, "1": 318.0000305175781}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "MASK", "type": "MASK", "links": [123], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "LoadImageMask"}, "widgets_values": ["test_mask (5).jpg", "red", "image"]}, {"id": 49, "type": "CLIPTextEncode", "pos": [886, 282], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 94}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [120], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["a glasssculpture of burger transparent, translucent, reflections"], "color": "#232", "bgcolor": "#353"}, {"id": 59, "type": "BrushNet", "pos": [1259, 61], "size": {"0": 315, "1": 246}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 117}, {"name": "vae", "type": "VAE", "link": 118}, {"name": "image", "type": "IMAGE", "link": 122}, {"name": "mask", "type": "MASK", "link": 123}, {"name": "brushnet", "type": "BRMODEL", "link": 119}, {"name": "positive", "type": "CONDITIONING", "link": 120}, {"name": "negative", "type": "CONDITIONING", "link": 121}, {"name": "clip", "type": "PPCLIP", "link": null}], "outputs": [{"name": "model", "type": "MODEL", "links": [113], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [114], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [115], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [116], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "BrushNet"}, "widgets_values": [1, 0, 10000]}, {"id": 45, "type": "BrushNetLoader", "pos": [49, 238], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [119], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["brushnet/random_mask.safetensors", "float16"]}], "links": [[82, 47, 0, 51, 0, "MODEL"], [83, 47, 1, 51, 1, "CLIP"], [94, 51, 1, 49, 0, "CLIP"], [95, 51, 1, 50, 0, "CLIP"], [105, 55, 0, 57, 0, "LATENT"], [106, 57, 0, 12, 0, "IMAGE"], [107, 47, 2, 57, 1, "VAE"], [113, 59, 0, 55, 0, "MODEL"], [114, 59, 1, 55, 1, "CONDITIONING"], [115, 59, 2, 55, 2, "CONDITIONING"], [116, 59, 3, 55, 3, "LATENT"], [117, 51, 0, 59, 0, "MODEL"], [118, 47, 2, 59, 1, "VAE"], [119, 45, 0, 59, 4, "BRMODEL"], [120, 49, 0, 59, 5, "CONDITIONING"], [121, 50, 0, 59, 6, "CONDITIONING"], [122, 1, 0, 59, 2, "IMAGE"], [123, 58, 0, 59, 3, "MASK"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/BrushNet_with_LoRA.png ADDED

Git LFS Details

  • SHA256: 1a0bfb3a0e793b2ef28568e55be7c206a58bd958e439d95f903b0ebccfe3e5c3
  • Pointer size: 132 Bytes
  • Size of remote file: 1.9 MB
example/PowerPaint_object_removal.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 78, "last_link_id": 164, "nodes": [{"id": 54, "type": "VAEDecode", "pos": [1921, 38], "size": {"0": 210, "1": 46}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 91}, {"name": "vae", "type": "VAE", "link": 92}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [93], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 50, "type": "CLIPTextEncode", "pos": [651, 168], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 80}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [146], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 45, "type": "BrushNetLoader", "pos": [8, 251], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [148], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["powerpaint/diffusion_pytorch_model.safetensors"]}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [3, 44], "size": {"0": 481, "1": 158}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [139], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [78, 80], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [92, 151], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 52, "type": "KSampler", "pos": [1571, 117], "size": {"0": 315, "1": 262}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 138}, {"name": "positive", "type": "CONDITIONING", "link": 142}, {"name": "negative", "type": "CONDITIONING", "link": 143}, {"name": "latent_image", "type": "LATENT", "link": 144, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [91], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 20, 7.5, "euler", "normal", 1]}, {"id": 65, "type": "PowerPaint", "pos": [1154, 136], "size": {"0": 315, "1": 294}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 139}, {"name": "vae", "type": "VAE", "link": 151}, {"name": "image", "type": "IMAGE", "link": 158}, {"name": "mask", "type": "MASK", "link": 164}, {"name": "powerpaint", "type": "BRMODEL", "link": 148}, {"name": "clip", "type": "CLIP", "link": 147}, {"name": "positive", "type": "CONDITIONING", "link": 145}, {"name": "negative", "type": "CONDITIONING", "link": 146}], "outputs": [{"name": "model", "type": "MODEL", "links": [138], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [142], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [143], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [144], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "PowerPaint"}, "widgets_values": [1, "object removal", 1, 0, 10000]}, {"id": 49, "type": "CLIPTextEncode", "pos": [649, 21], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 78}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [145], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["empty scene blur"], "color": "#232", "bgcolor": "#353"}, {"id": 58, "type": "LoadImage", "pos": [10, 404], "size": [542.1735076904297, 630.6464691162109], "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [158, 159], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image (1).jpg", "image"]}, {"id": 76, "type": "SAMModelLoader (segment anything)", "pos": [30, 1107], "size": {"0": 315, "1": 58}, "flags": {}, "order": 4, "mode": 0, "outputs": [{"name": "SAM_MODEL", "type": "SAM_MODEL", "links": [163], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "SAMModelLoader (segment anything)"}, "widgets_values": ["sam_vit_h (2.56GB)"]}, {"id": 74, "type": "GroundingDinoModelLoader (segment anything)", "pos": [384, 1105], "size": [401.77337646484375, 63.24662780761719], "flags": {}, "order": 5, "mode": 0, "outputs": [{"name": "GROUNDING_DINO_MODEL", "type": "GROUNDING_DINO_MODEL", "links": [160], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "GroundingDinoModelLoader (segment anything)"}, "widgets_values": ["GroundingDINO_SwinT_OGC (694MB)"]}, {"id": 12, "type": "PreviewImage", "pos": [1502, 455], "size": [552.7734985351562, 568.0465545654297], "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 93}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 75, "type": "GroundingDinoSAMSegment (segment anything)", "pos": [642, 587], "size": [368.77362060546875, 122], "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "sam_model", "type": "SAM_MODEL", "link": 163}, {"name": "grounding_dino_model", "type": "GROUNDING_DINO_MODEL", "link": 160}, {"name": "image", "type": "IMAGE", "link": 159}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": null, "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [164], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GroundingDinoSAMSegment (segment anything)"}, "widgets_values": ["leaves", 0.3]}, {"id": 66, "type": "PowerPaintCLIPLoader", "pos": [654, 343], "size": {"0": 315, "1": 82}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "clip", "type": "CLIP", "links": [147], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "PowerPaintCLIPLoader"}, "widgets_values": ["model.fp16.safetensors", "powerpaint/pytorch_model.bin"]}], "links": [[78, 47, 1, 49, 0, "CLIP"], [80, 47, 1, 50, 0, "CLIP"], [91, 52, 0, 54, 0, "LATENT"], [92, 47, 2, 54, 1, "VAE"], [93, 54, 0, 12, 0, "IMAGE"], [138, 65, 0, 52, 0, "MODEL"], [139, 47, 0, 65, 0, "MODEL"], [142, 65, 1, 52, 1, "CONDITIONING"], [143, 65, 2, 52, 2, "CONDITIONING"], [144, 65, 3, 52, 3, "LATENT"], [145, 49, 0, 65, 6, "CONDITIONING"], [146, 50, 0, 65, 7, "CONDITIONING"], [147, 66, 0, 65, 5, "CLIP"], [148, 45, 0, 65, 4, "BRMODEL"], [151, 47, 2, 65, 1, "VAE"], [158, 58, 0, 65, 2, "IMAGE"], [159, 58, 0, 75, 2, "IMAGE"], [160, 74, 0, 75, 1, "GROUNDING_DINO_MODEL"], [163, 76, 0, 75, 0, "SAM_MODEL"], [164, 75, 1, 65, 3, "MASK"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/PowerPaint_object_removal.png ADDED

Git LFS Details

  • SHA256: be37c27e73e00de2291c59da162b66694f2de9cd5199c61503b636efa026618d
  • Pointer size: 132 Bytes
  • Size of remote file: 1.79 MB
example/PowerPaint_outpaint.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 73, "last_link_id": 157, "nodes": [{"id": 54, "type": "VAEDecode", "pos": [1921, 38], "size": {"0": 210, "1": 46}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 91}, {"name": "vae", "type": "VAE", "link": 92}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [93], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 50, "type": "CLIPTextEncode", "pos": [651, 168], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 80}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [146], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": [""], "color": "#322", "bgcolor": "#533"}, {"id": 45, "type": "BrushNetLoader", "pos": [8, 251], "size": {"0": 576.2000122070312, "1": 104}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "brushnet", "type": "BRMODEL", "links": [148], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "BrushNetLoader"}, "widgets_values": ["powerpaint/diffusion_pytorch_model.safetensors"]}, {"id": 47, "type": "CheckpointLoaderSimple", "pos": [3, 44], "size": {"0": 481, "1": 158}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [139], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [78, 80], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [92, 151], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["realisticVisionV60B1_v51VAE.safetensors"]}, {"id": 58, "type": "LoadImage", "pos": [10, 404], "size": [542.1735076904297, 630.6464691162109], "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [152], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["test_image (1).jpg", "image"]}, {"id": 49, "type": "CLIPTextEncode", "pos": [649, 21], "size": {"0": 339.20001220703125, "1": 96.39999389648438}, "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 78}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [145], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["empty scene"], "color": "#232", "bgcolor": "#353"}, {"id": 66, "type": "PowerPaintCLIPLoader", "pos": [674, 345], "size": {"0": 315, "1": 82}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "clip", "type": "CLIP", "links": [147], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "PowerPaintCLIPLoader"}, "widgets_values": ["model.fp16.safetensors", "powerpaint/pytorch_model.bin"]}, {"id": 70, "type": "ImagePadForOutpaint", "pos": [678, 511], "size": {"0": 315, "1": 174}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 152}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [156], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [157], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "ImagePadForOutpaint"}, "widgets_values": [200, 0, 200, 0, 0]}, {"id": 12, "type": "PreviewImage", "pos": [1213, 477], "size": [930.6534439086913, 553.5264953613282], "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 93}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 65, "type": "PowerPaint", "pos": [1154, 136], "size": {"0": 315, "1": 294}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 139}, {"name": "vae", "type": "VAE", "link": 151}, {"name": "image", "type": "IMAGE", "link": 156}, {"name": "mask", "type": "MASK", "link": 157}, {"name": "powerpaint", "type": "BRMODEL", "link": 148}, {"name": "clip", "type": "CLIP", "link": 147}, {"name": "positive", "type": "CONDITIONING", "link": 145}, {"name": "negative", "type": "CONDITIONING", "link": 146}], "outputs": [{"name": "model", "type": "MODEL", "links": [138], "shape": 3, "slot_index": 0}, {"name": "positive", "type": "CONDITIONING", "links": [142], "shape": 3, "slot_index": 1}, {"name": "negative", "type": "CONDITIONING", "links": [143], "shape": 3, "slot_index": 2}, {"name": "latent", "type": "LATENT", "links": [144], "shape": 3, "slot_index": 3}], "properties": {"Node name for S&R": "PowerPaint"}, "widgets_values": [1, "image outpainting", 1, 0, 10000]}, {"id": 52, "type": "KSampler", "pos": [1571, 117], "size": {"0": 315, "1": 262}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 138}, {"name": "positive", "type": "CONDITIONING", "link": 142}, {"name": "negative", "type": "CONDITIONING", "link": 143}, {"name": "latent_image", "type": "LATENT", "link": 144, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [91], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 20, 7.5, "euler", "normal", 1]}], "links": [[78, 47, 1, 49, 0, "CLIP"], [80, 47, 1, 50, 0, "CLIP"], [91, 52, 0, 54, 0, "LATENT"], [92, 47, 2, 54, 1, "VAE"], [93, 54, 0, 12, 0, "IMAGE"], [138, 65, 0, 52, 0, "MODEL"], [139, 47, 0, 65, 0, "MODEL"], [142, 65, 1, 52, 1, "CONDITIONING"], [143, 65, 2, 52, 2, "CONDITIONING"], [144, 65, 3, 52, 3, "LATENT"], [145, 49, 0, 65, 6, "CONDITIONING"], [146, 50, 0, 65, 7, "CONDITIONING"], [147, 66, 0, 65, 5, "CLIP"], [148, 45, 0, 65, 4, "BRMODEL"], [151, 47, 2, 65, 1, "VAE"], [152, 58, 0, 70, 0, "IMAGE"], [156, 70, 0, 65, 2, "IMAGE"], [157, 70, 1, 65, 3, "MASK"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/PowerPaint_outpaint.png ADDED

Git LFS Details

  • SHA256: 8601b20a7709c03c39b33a8cccd1ef5ba45843926cdd382d58aeaca4a51f8351
  • Pointer size: 132 Bytes
  • Size of remote file: 2.18 MB
example/RAUNet1.png ADDED

Git LFS Details

  • SHA256: 23e34063979e843557034a65abd14b76fd1ecd05be3551c25c5c2a32ed21888f
  • Pointer size: 132 Bytes
  • Size of remote file: 1.81 MB
example/RAUNet2.png ADDED

Git LFS Details

  • SHA256: 1422246f3c2c42bb15c247024f5274792a827eff69f2b3854d537038d416e9b2
  • Pointer size: 132 Bytes
  • Size of remote file: 1.88 MB
example/RAUNet_basic.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 26, "last_link_id": 48, "nodes": [{"id": 7, "type": "KSamplerAdvanced", "pos": [1281, 461], "size": {"0": 315, "1": 334}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 48}, {"name": "positive", "type": "CONDITIONING", "link": 8}, {"name": "negative", "type": "CONDITIONING", "link": 9}, {"name": "latent_image", "type": "LATENT", "link": 10, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [22], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSamplerAdvanced"}, "widgets_values": ["disable", 0, "fixed", 25, 8, "ddpm", "normal", 0, 10000, "disable"], "color": "#2a363b", "bgcolor": "#3f5159"}, {"id": 23, "type": "KSamplerAdvanced", "pos": [1280, 872], "size": {"0": 315, "1": 334}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 46}, {"name": "positive", "type": "CONDITIONING", "link": 45}, {"name": "negative", "type": "CONDITIONING", "link": 43}, {"name": "latent_image", "type": "LATENT", "link": 44, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [42], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSamplerAdvanced"}, "widgets_values": ["disable", 0, "fixed", 25, 8, "ddpm", "normal", 0, 10000, "disable"], "color": "#2a363b", "bgcolor": "#3f5159"}, {"id": 1, "type": "CheckpointLoaderSimple", "pos": [452, 461], "size": {"0": 320.2000732421875, "1": 108.99996948242188}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [46, 47], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [1, 6], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [23, 40], "shape": 3, "slot_index": 2}], "title": "Load Base Checkpoint", "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["SDXL/zavychromaxl_v70.safetensors"], "color": "#2a363b", "bgcolor": "#3f5159"}, {"id": 5, "type": "CLIPTextEncodeSDXL", "pos": [854, 844], "size": [319.27423095703125, 311.4324369430542], "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 6}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [9, 43], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncodeSDXL"}, "widgets_values": [4096, 4096, 0, 0, 1024, 1024, "ugly, deformed, noisy, low poly, blurry, text, duplicate, poorly drawn, mosaic", "ugly, deformed, noisy, low poly, blurry, text, duplicate, poorly drawn, mosaic"], "color": "#322", "bgcolor": "#533"}, {"id": 8, "type": "EmptyLatentImage", "pos": [868, 1205], "size": [269.2342041015627, 106], "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "LATENT", "type": "LATENT", "links": [10, 44], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "EmptyLatentImage"}, "widgets_values": [2048, 2048, 1]}, {"id": 2, "type": "CLIPTextEncodeSDXL", "pos": [852, 457], "size": [325.67423095703134, 332.3523832321167], "flags": {}, "order": 3, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 1}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [8, 45], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncodeSDXL"}, "widgets_values": [4096, 4096, 0, 0, 1024, 1024, "an exotic fox, cute, chibi kawaii. detailed fur, hyperdetailed, big reflective eyes", "thick strokes, bright colors, fairytale, artstation,centered composition, perfect composition, centered, vibrant colors, muted colors, high detailed, 8k"], "color": "#232", "bgcolor": "#353"}, {"id": 25, "type": "PreviewImage", "pos": [1628, 460], "size": {"0": 650.7540893554688, "1": 766.8323974609375}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 41}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 24, "type": "VAEDecode", "pos": [1683, 350], "size": {"0": 210, "1": 46}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 42, "slot_index": 0}, {"name": "vae", "type": "VAE", "link": 40, "slot_index": 1}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [41], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 14, "type": "VAEDecode", "pos": [1985, 347], "size": {"0": 210, "1": 46}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 22}, {"name": "vae", "type": "VAE", "link": 23}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [24], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 15, "type": "PreviewImage", "pos": [2298, 457], "size": [650.7540725708009, 766.8323699951172], "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 24}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 26, "type": "RAUNet", "pos": [857, 270], "size": {"0": 315, "1": 130}, "flags": {}, "order": 2, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 47}], "outputs": [{"name": "model", "type": "MODEL", "links": [48], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "RAUNet"}, "widgets_values": [0, 2, 2, 6]}], "links": [[1, 1, 1, 2, 0, "CLIP"], [6, 1, 1, 5, 0, "CLIP"], [8, 2, 0, 7, 1, "CONDITIONING"], [9, 5, 0, 7, 2, "CONDITIONING"], [10, 8, 0, 7, 3, "LATENT"], [22, 7, 0, 14, 0, "LATENT"], [23, 1, 2, 14, 1, "VAE"], [24, 14, 0, 15, 0, "IMAGE"], [40, 1, 2, 24, 1, "VAE"], [41, 24, 0, 25, 0, "IMAGE"], [42, 23, 0, 24, 0, "LATENT"], [43, 5, 0, 23, 2, "CONDITIONING"], [44, 8, 0, 23, 3, "LATENT"], [45, 2, 0, 23, 1, "CONDITIONING"], [46, 1, 0, 23, 0, "MODEL"], [47, 1, 0, 26, 0, "MODEL"], [48, 26, 0, 7, 0, "MODEL"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/RAUNet_with_CN.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_node_id": 20, "last_link_id": 34, "nodes": [{"id": 5, "type": "VAEDecode", "pos": [1916.4395019531253, 183.40589904785156], "size": {"0": 210, "1": 46}, "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 6}, {"name": "vae", "type": "VAE", "link": 8, "slot_index": 1}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [7], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 10, "type": "ControlNetLoader", "pos": [229, -378], "size": {"0": 432.609130859375, "1": 78.54664611816406}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "CONTROL_NET", "type": "CONTROL_NET", "links": [15], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "ControlNetLoader"}, "widgets_values": ["control_canny-fp16.safetensors"]}, {"id": 11, "type": "LoadImage", "pos": [230, -237], "size": {"0": 393.4891357421875, "1": 460.0666809082031}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [18], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["fox_with_sword (1).png", "image"]}, {"id": 2, "type": "CLIPTextEncode", "pos": [713, 274], "size": {"0": 392.8395080566406, "1": 142.005859375}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 1}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [16], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["black fox with big sword, standing in a small town cute, chibi kawaii. fairytale, artstation, centered composition, perfect composition, centered, vibrant colors, muted colors, high detailed, 8k"], "color": "#232", "bgcolor": "#353"}, {"id": 16, "type": "VAEDecode", "pos": [1897, -612], "size": {"0": 210, "1": 46}, "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 24}, {"name": "vae", "type": "VAE", "link": 26, "slot_index": 1}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [25], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 9, "type": "ControlNetApply", "pos": [1153, 111], "size": {"0": 317.4000244140625, "1": 98}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "conditioning", "type": "CONDITIONING", "link": 16}, {"name": "control_net", "type": "CONTROL_NET", "link": 15}, {"name": "image", "type": "IMAGE", "link": 19}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [17, 27], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "ControlNetApply"}, "widgets_values": [0.8]}, {"id": 3, "type": "CLIPTextEncode", "pos": [714, 488], "size": {"0": 399.75958251953125, "1": 111.60586547851562}, "flags": {}, "order": 7, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 2}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [5, 28], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["hat, text, blurry, ugly, duplicate, poorly drawn, deformed, mosaic"], "color": "#322", "bgcolor": "#533"}, {"id": 1, "type": "CheckpointLoaderSimple", "pos": [199, 295], "size": {"0": 440.8395080566406, "1": 99.80586242675781}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [23, 29], "shape": 3, "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [1, 2], "shape": 3, "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [8, 26], "shape": 3, "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["SD15/revAnimated_v2Rebirth.safetensors"]}, {"id": 13, "type": "PreviewImage", "pos": [1057, -320], "size": {"0": 210, "1": 246}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 20}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 6, "type": "PreviewImage", "pos": [1883, 277], "size": {"0": 623.648193359375, "1": 645.5486450195312}, "flags": {}, "order": 14, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 7}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 17, "type": "PreviewImage", "pos": [1897, -508], "size": {"0": 602.8720703125, "1": 630.0126953125}, "flags": {}, "order": 15, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 25}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 12, "type": "CannyEdgePreprocessor", "pos": [689, -123], "size": {"0": 315, "1": 106}, "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 18}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [19, 20], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "CannyEdgePreprocessor"}, "widgets_values": [100, 200, 1024]}, {"id": 18, "type": "RAUNet", "pos": [1113, -500], "size": {"0": 315, "1": 130}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 29}], "outputs": [{"name": "model", "type": "MODEL", "links": [30], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "RAUNet"}, "widgets_values": [0, 2, 2, 8]}, {"id": 4, "type": "KSampler", "pos": [1529, 115], "size": {"0": 315, "1": 262}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 23}, {"name": "positive", "type": "CONDITIONING", "link": 17}, {"name": "negative", "type": "CONDITIONING", "link": 5}, {"name": "latent_image", "type": "LATENT", "link": 9, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [6], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 25, 8, "euler_ancestral", "normal", 1]}, {"id": 15, "type": "KSampler", "pos": [1523, -441], "size": {"0": 315, "1": 262}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 30}, {"name": "positive", "type": "CONDITIONING", "link": 27}, {"name": "negative", "type": "CONDITIONING", "link": 28}, {"name": "latent_image", "type": "LATENT", "link": 31, "slot_index": 3}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [24], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [0, "fixed", 25, 8, "euler_ancestral", "normal", 1]}, {"id": 7, "type": "EmptyLatentImage", "pos": [797, 652], "size": {"0": 315, "1": 106}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "LATENT", "type": "LATENT", "links": [9, 31], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "EmptyLatentImage"}, "widgets_values": [1024, 1024, 1]}], "links": [[1, 1, 1, 2, 0, "CLIP"], [2, 1, 1, 3, 0, "CLIP"], [5, 3, 0, 4, 2, "CONDITIONING"], [6, 4, 0, 5, 0, "LATENT"], [7, 5, 0, 6, 0, "IMAGE"], [8, 1, 2, 5, 1, "VAE"], [9, 7, 0, 4, 3, "LATENT"], [15, 10, 0, 9, 1, "CONTROL_NET"], [16, 2, 0, 9, 0, "CONDITIONING"], [17, 9, 0, 4, 1, "CONDITIONING"], [18, 11, 0, 12, 0, "IMAGE"], [19, 12, 0, 9, 2, "IMAGE"], [20, 12, 0, 13, 0, "IMAGE"], [23, 1, 0, 4, 0, "MODEL"], [24, 15, 0, 16, 0, "LATENT"], [25, 16, 0, 17, 0, "IMAGE"], [26, 1, 2, 16, 1, "VAE"], [27, 9, 0, 15, 1, "CONDITIONING"], [28, 3, 0, 15, 2, "CONDITIONING"], [29, 1, 0, 18, 0, "MODEL"], [30, 18, 0, 15, 0, "MODEL"], [31, 7, 0, 15, 3, "LATENT"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}
example/goblin_toy.png ADDED

Git LFS Details

  • SHA256: f70ac70ce8cb28470e487668f780bb5458027eb6c01828d47fe4f76330a478d3
  • Pointer size: 132 Bytes
  • Size of remote file: 1.16 MB