PPO Agent playing seals/Ant-v0
This is a trained model of a PPO agent playing seals/Ant-v0 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Ant-v0 -orga ernestumorga -f logs/
python enjoy.py --algo ppo --env seals/Ant-v0 -f logs/
If you installed the RL Zoo3 via pip (pip install rl_zoo3
), from anywhere you can do:
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Ant-v0 -orga ernestumorga -f logs/
rl_zoo3 enjoy --algo ppo --env seals/Ant-v0 -f logs/
Training (with the RL Zoo)
python train.py --algo ppo --env seals/Ant-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env seals/Ant-v0 -f logs/ -orga ernestumorga
Hyperparameters
OrderedDict([('batch_size', 16),
('clip_range', 0.3),
('ent_coef', 3.1441389214159857e-06),
('gae_lambda', 0.8),
('gamma', 0.995),
('learning_rate', 0.00017959211641976886),
('max_grad_norm', 0.9),
('n_epochs', 10),
('n_steps', 2048),
('n_timesteps', 1000000.0),
('normalize',
{'gamma': 0.995, 'norm_obs': False, 'norm_reward': True}),
('policy', 'MlpPolicy'),
('policy_kwargs',
{'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
('vf_coef', 0.4351450387648799),
('normalize_kwargs',
{'norm_obs': {'gamma': 0.995,
'norm_obs': False,
'norm_reward': True},
'norm_reward': False})])
- Downloads last month
- 6
Evaluation results
- mean_reward on seals/Ant-v0self-reported3034.50 +/- 1124.70