language: | |
- en | |
tags: | |
- esc | |
datasets: | |
- librispeech | |
To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: | |
```python | |
#!/usr/bin/env bash | |
python run_flax_speech_recognition_ctc.py \ | |
--model_name_or_path="esc-benchmark/wav2vec2-ctc-pretrained" \ | |
--tokenizer_name="wav2vec2-ctc-librispeech-tokenizer" \ | |
--dataset_name="esc-benchmark/esc-datasets" \ | |
--dataset_config_name="librispeech" \ | |
--output_dir="./" \ | |
--wandb_project="wav2vec2-ctc" \ | |
--wandb_name="wav2vec2-ctc-librispeech" \ | |
--max_steps="50000" \ | |
--save_steps="10000" \ | |
--eval_steps="10000" \ | |
--learning_rate="3e-4" \ | |
--logging_steps="25" \ | |
--warmup_steps="5000" \ | |
--preprocessing_num_workers="1" \ | |
--hidden_dropout="0.2" \ | |
--activation_dropout="0.2" \ | |
--feat_proj_dropout="0.2" \ | |
--do_train \ | |
--do_eval \ | |
--do_predict \ | |
--overwrite_output_dir \ | |
--gradient_checkpointing \ | |
--freeze_feature_encoder \ | |
--push_to_hub \ | |
--use_auth_token | |
``` | |