metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: interview_classifier
results: []
interview_classifier
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7181
- Accuracy: 0.8362
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.5731 | 1.0 | 579 | 2.3539 | 0.2888 |
2.2431 | 2.0 | 1158 | 1.8700 | 0.4526 |
1.8916 | 3.0 | 1737 | 1.5977 | 0.5302 |
1.5897 | 4.0 | 2316 | 1.2684 | 0.6509 |
1.485 | 5.0 | 2895 | 1.0863 | 0.6724 |
1.282 | 6.0 | 3474 | 0.9135 | 0.7716 |
1.0021 | 7.0 | 4053 | 0.8167 | 0.8103 |
0.9446 | 8.0 | 4632 | 0.7997 | 0.8017 |
0.8573 | 9.0 | 5211 | 0.7286 | 0.8319 |
0.8327 | 10.0 | 5790 | 0.7181 | 0.8362 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0