ESPnet2 ASR model

espnet/Yen-Ju_Lu_spatilaizedslurp_asr_train_asr_conformer_transformer_valid.acc.best

This model was trained by neillu23 using slurp_mixture recipe in espnet.

Demo: How to use in ESPnet2

cd espnet
git checkout 0fae8113d99d092e7cbe4bcc48f9361e7012cff2
pip install -e .
cd egs2/slurp_mixture/asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/Yen-Ju_Lu_spatilaizedslurp_asr_train_asr_conformer_transformer_valid.acc.best

RESULTS

Environments

  • date: Tue Mar 29 04:17:37 UTC 2022
  • python version: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]
  • espnet version: espnet 0.10.7a1
  • pytorch version: pytorch 1.9.0
  • Git hash: 0fae8113d99d092e7cbe4bcc48f9361e7012cff2
    • Commit date: Thu Mar 24 07:54:19 2022 +0000

asr_train_asr_raw_en_word

WER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
inference_asr_model_valid.acc.best/devel 8690 109017 63.9 21.1 15.0 2.0 38.1 75.4
inference_asr_model_valid.acc.best/test 6099 77315 69.0 17.4 13.5 1.8 32.8 68.9
inference_asr_model_valid.acc.best/test_ineube 6099 77315 77.8 12.0 10.2 1.5 23.6 59.4
inference_asr_model_valid.acc.best/test_qut 6099 77315 68.4 17.9 13.6 1.8 33.3 69.5
inference_asr_model_valid.acc.best/test_qut_ineube 6099 77315 78.0 11.9 10.2 1.4 23.4 59.3

CER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
inference_asr_model_valid.acc.best/devel 8690 513265 79.6 9.3 11.0 3.6 23.9 75.4
inference_asr_model_valid.acc.best/test 6099 362039 82.6 7.6 9.8 3.0 20.4 68.9
inference_asr_model_valid.acc.best/test_ineube 6099 362039 87.5 4.9 7.6 2.1 14.6 59.4
inference_asr_model_valid.acc.best/test_qut 6099 362039 82.3 7.8 9.9 3.1 20.8 69.5
inference_asr_model_valid.acc.best/test_qut_ineube 6099 362039 87.5 4.9 7.6 2.1 14.6 59.3

ASR config

expand
config: conf/train_asr.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_asr_raw_en_word
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 3
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 35953
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 50
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - acc
    - max
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 48
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_word/train/speech_shape
- exp/asr_stats_raw_en_word/train/text_shape.word
valid_shape_file:
- exp/asr_stats_raw_en_word/valid/speech_shape
- exp/asr_stats_raw_en_word/valid/text_shape.word
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
-   - dump/raw/train/wav.scp
    - speech
    - sound
-   - dump/raw/train/text
    - text
    - text
valid_data_path_and_name_and_type:
-   - dump/raw/devel/wav.scp
    - speech
    - sound
-   - dump/raw/devel/text
    - text
    - text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
    lr: 0.0002
scheduler: warmuplr
scheduler_conf:
    warmup_steps: 25000
token_list:
- <blank>
- <unk>
- ▁the
- s
- ▁to
- ▁i
- ▁me
- ▁you
- ▁what
- ▁a
- ▁is
- a
- ▁my
- ▁please
- y
- ''''
- ▁in
- ing
- ▁s
- e
- o
- ▁for
- i
- ▁on
- d
- t
- u
- er
- p
- ▁of
- es
- re
- l
- ▁it
- ▁p
- le
- ▁f
- ▁m
- ▁email
- ▁d
- m
- ▁c
- ▁b
- st
- r
- n
- ar
- ▁t
- ▁h
- b
- ▁that
- c
- ▁this
- h
- an
- email_query
- ▁play
- ▁re
- ▁do
- ▁can
- at
- ▁have
- g
- ▁from
- ▁and
- en
- email_sendemail
- ▁olly
- 'on'
- ▁new
- it
- qa_factoid
- calendar_set
- ▁any
- or
- ▁g
- ent
- ▁how
- ▁tell
- ch
- ▁not
- ▁about
- ▁at
- ate
- general_negate
- f
- ▁today
- ▁e
- ed
- ▁list
- ▁r
- in
- k
- ic
- social_post
- ▁are
- play_music
- general_quirky
- ▁l
- al
- v
- ▁n
- ▁be
- ▁an
- ▁st
- et
- ▁am
- general_praise
- ▁time
- weather_query
- ▁up
- ▁check
- calendar_query
- ▁w
- om
- ur
- ▁send
- ▁with
- ly
- w
- general_explain
- ad
- ▁th
- news_query
- ▁one
- ▁emails
- day
- ▁sh
- ce
- ▁
- ▁last
- ve
- ▁he
- z
- ▁ch
- ▁will
- ▁set
- ▁would
- ▁was
- x
- general_repeat
- ▁add
- ▁again
- ou
- ▁ex
- is
- ct
- general_affirm
- general_confirm
- ▁song
- ▁next
- ▁j
- ▁meeting
- um
- ation
- ▁turn
- ▁did
- if
- ▁alarm
- am
- ▁like
- datetime_query
- ter
- ▁remind
- ▁o
- qa_definition
- ▁said
- ▁calendar
- ll
- se
- ers
- ▁pr
- th
- ▁get
- our
- ▁need
- ▁all
- ot
- ▁want
- ▁off
- and
- ▁right
- ▁de
- ▁tr
- ut
- general_dontcare
- as
- ▁week
- ▁tweet
- ight
- ir
- ▁your
- ▁event
- ▁news
- ▁se
- ay
- ion
- ▁com
- ▁there
- ▁ye
- ▁weather
- un
- ▁confirm
- ld
- calendar_remove
- ▁y
- ▁lights
- ▁more
- ▁v
- play_radio
- ▁does
- ▁po
- ▁now
- id
- email_querycontact
- ▁show
- ▁could
- ery
- op
- ▁day
- ▁pm
- ▁music
- ▁tomorrow
- ▁train
- ▁u
- ine
- ▁or
- ange
- qa_currency
- ice
- ▁contact
- ▁just
- ▁jo
- ▁think
- qa_stock
- end
- ss
- ber
- ▁tw
- ▁command
- ▁make
- ▁no
- ▁mo
- pe
- ▁find
- general_commandstop
- ▁when
- social_query
- ▁so
- ong
- ▁co
- ant
- ow
- q
- ▁much
- ▁where
- ue
- ul
- ri
- ake
- ap
- ▁start
- ▁mar
- ▁by
- one
- ▁know
- ▁wor
- oo
- ▁give
- ▁let
- ▁events
- der
- ▁ro
- ▁pl
- play_podcasts
- art
- us
- ▁work
- ▁current
- ol
- cooking_recipe
- nt
- ▁correct
- transport_query
- ia
- ▁stock
- ▁br
- ive
- ▁app
- ▁two
- ▁latest
- lists_query
- recommendation_events
- ab
- ▁go
- ▁but
- ook
- ▁some
- ke
- alarm_set
- play_audiobook
- ▁k
- ▁response
- ▁wr
- cast
- ▁open
- ▁cle
- ▁done
- ▁got
- ▁ca
- ite
- ase
- ▁thank
- iv
- ag
- ah
- ▁answer
- ie
- ▁five
- ▁book
- ▁rec
- ore
- ▁john
- ist
- ment
- ▁appreci
- ▁fri
- ack
- ▁remove
- ated
- ock
- ree
- j
- ▁good
- ▁many
- orn
- fe
- ▁radio
- ▁we
- int
- ▁facebook
- ▁cl
- ▁sev
- ▁schedule
- ard
- ▁per
- ▁li
- ▁going
- nd
- ain
- recommendation_locations
- ▁post
- lists_createoradd
- ff
- ▁su
- red
- iot_hue_lightoff
- lists_remove
- ▁ar
- een
- ▁say
- ro
- ▁volume
- ▁le
- ▁reply
- ▁complaint
- ▁delete
- ▁out
- lly
- ame
- ▁ne
- ▁detail
- ▁if
- im
- ▁happ
- orr
- ich
- em
- ▁ev
- ction
- ▁dollar
- ▁as
- alarm_query
- audio_volume_mute
- ac
- music_query
- ▁mon
- ther
- ▁thanks
- cel
- ▁who
- ave
- ▁service
- ▁mail
- ▁hear
- ty
- de
- ▁si
- ▁wh
- ood
- ell
- ▁con
- icket
- ▁once
- ound
- ▁don
- ▁loc
- ▁light
- ▁birthday
- ▁inf
- ffe
- ▁has
- ▁playlist
- ort
- el
- ening
- ▁us
- ▁un
- own
- ▁inc
- ai
- ▁speak
- age
- ▁mess
- ast
- ci
- ver
- ▁ten
- ▁underst
- gh
- audio_volume_up
- ome
- transport_ticket
- ind
- iot_hue_lightchange
- iot_coffee
- pp
- ▁res
- plain
- io
- lar
- takeaway_query
- ge
- takeaway_order
- email_addcontact
- play_game
- ak
- ▁fa
- transport_traffic
- music_likeness
- ▁rep
- act
- ust
- transport_taxi
- iot_hue_lightdim
- ▁mu
- ▁ti
- ick
- ▁ha
- ould
- general_joke
- '1'
- qa_maths
- ▁lo
- iot_cleaning
- ill
- her
- iot_hue_lightup
- pl
- '2'
- alarm_remove
- orrect
- ▁cont
- mail
- out
- audio_volume_down
- book
- ail
- recommendation_movies
- ck
- ▁man
- ▁mus
- ▁che
- me
- ume
- ▁answ
- datetime_convert
- ▁late
- iot_wemo_on
- ▁twe
- music_settings
- iot_wemo_off
- orre
- ith
- ▁tom
- ▁fr
- ere
- ▁ad
- xt
- ▁ab
- ank
- general_greet
- now
- ▁meet
- ▁curre
- ▁respon
- ▁ag
- audio_volume_other
- ink
- ▁spe
- iot_hue_lighton
- ght
- ▁rem
- '?'
- urn
- ▁op
- ▁complain
- ▁comm
- let
- music_dislikeness
- ove
- ▁sch
- ather
- ▁rad
- edule
- ▁under
- lease
- ▁bir
- erv
- ▁birth
- ▁face
- ▁cur
- sw
- ▁serv
- ek
- aid
- '9'
- ▁vol
- edu
- '5'
- cooking_query
- lete
- ▁joh
- ▁det
- firm
- nder
- '0'
- _
- irm
- '8'
- '&'
- list
- pon
- qa_query
- '7'
- '3'
- '-'
- N
- A
- M
- E
- ']'
- '['
- ':'
- reci
- ▁doll
- <sos/eos>
init: null
input_size: null
ctc_conf:
    dropout_rate: 0.0
    ctc_type: builtin
    reduce: true
    ignore_nan_grad: true
joint_net_conf: null
model_conf:
    ctc_weight: 0.3
    lsm_weight: 0.1
    length_normalized_loss: false
    extract_feats_in_collect_stats: false
use_preprocessor: true
token_type: word
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
frontend: default
frontend_conf:
    fs: 16k
specaug: specaug
specaug_conf:
    apply_time_warp: true
    time_warp_window: 5
    time_warp_mode: bicubic
    apply_freq_mask: true
    freq_mask_width_range:
    - 0
    - 30
    num_freq_mask: 2
    apply_time_mask: true
    time_mask_width_range:
    - 0
    - 40
    num_time_mask: 2
normalize: utterance_mvn
normalize_conf: {}
preencoder: null
preencoder_conf: {}
encoder: conformer
encoder_conf:
    output_size: 512
    attention_heads: 8
    linear_units: 2048
    num_blocks: 12
    dropout_rate: 0.1
    positional_dropout_rate: 0.1
    attention_dropout_rate: 0.1
    input_layer: conv2d
    normalize_before: true
    macaron_style: true
    pos_enc_layer_type: rel_pos
    selfattention_layer_type: rel_selfattn
    activation_type: swish
    use_cnn_module: true
    cnn_module_kernel: 31
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
    attention_heads: 8
    linear_units: 2048
    num_blocks: 6
    dropout_rate: 0.1
    positional_dropout_rate: 0.1
    self_attention_dropout_rate: 0.1
    src_attention_dropout_rate: 0.1
required:
- output_dir
- token_list
version: 0.10.7a1
distributed: true

Citing ESPnet

@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}



or arXiv:

@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit}, 
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.