File size: 4,973 Bytes
2f1ccda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: llama3
base_model: maywell/Llama-3-Ko-Luxia-Instruct
tags:
- generated_from_trainer
model-index:
- name: data/output/1min-luxia-8b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: maywell/Llama-3-Ko-Luxia-Instruct
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: "../data/output_fix_real.json"
type: alpaca
conversation: chatml
dataset_prepared_path: ../data/1min-luxia-data-pre
val_set_size: 0.1
output_dir: ../data/output/1min-luxia-8b
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: null
tf32: false
gradient_checkpointing: true
early_stopping_patience: null
resume_from_checkpoint: null
local_rank: null
logging_steps: 1
xformers_attention: null
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size: null
eval_max_new_tokens: 128
saves_per_epoch: 1
save_total_limit: 4
debug: true
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# data/output/1min-luxia-8b
This model is a fine-tuned version of [maywell/Llama-3-Ko-Luxia-Instruct](https://huggingface.co/maywell/Llama-3-Ko-Luxia-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5280
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 8
- total_train_batch_size: 56
- total_eval_batch_size: 7
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.9998 | 0.2051 | 1 | 3.0382 |
| 3.0081 | 0.4103 | 2 | 3.0379 |
| 2.9024 | 0.6154 | 3 | 3.0356 |
| 2.9814 | 0.8205 | 4 | 3.0280 |
| 2.9813 | 1.0256 | 5 | 3.0136 |
| 2.9137 | 1.1795 | 6 | 2.9918 |
| 2.9909 | 1.3846 | 7 | 2.9426 |
| 2.8925 | 1.5897 | 8 | 2.9047 |
| 2.825 | 1.7949 | 9 | 2.8790 |
| 2.8329 | 2.0 | 10 | 2.7949 |
| 2.6496 | 2.1538 | 11 | 2.7632 |
| 2.6857 | 2.3590 | 12 | 2.7388 |
| 2.679 | 2.5641 | 13 | 2.7193 |
| 2.6802 | 2.7692 | 14 | 2.6748 |
| 2.6269 | 2.9744 | 15 | 2.6452 |
| 2.5546 | 3.1282 | 16 | 2.6286 |
| 2.574 | 3.3333 | 17 | 2.6168 |
| 2.5548 | 3.5385 | 18 | 2.6054 |
| 2.5145 | 3.7436 | 19 | 2.5952 |
| 2.452 | 3.9487 | 20 | 2.5863 |
| 2.4647 | 4.1026 | 21 | 2.5786 |
| 2.423 | 4.3077 | 22 | 2.5715 |
| 2.4104 | 4.5128 | 23 | 2.5648 |
| 2.3664 | 4.7179 | 24 | 2.5592 |
| 2.4211 | 4.9231 | 25 | 2.5536 |
| 2.4291 | 5.0769 | 26 | 2.5492 |
| 2.3475 | 5.2821 | 27 | 2.5455 |
| 2.3665 | 5.4872 | 28 | 2.5417 |
| 2.3862 | 5.6923 | 29 | 2.5387 |
| 2.3784 | 5.8974 | 30 | 2.5360 |
| 2.354 | 6.0513 | 31 | 2.5343 |
| 2.3442 | 6.2564 | 32 | 2.5321 |
| 2.3499 | 6.4615 | 33 | 2.5312 |
| 2.3312 | 6.6667 | 34 | 2.5297 |
| 2.3551 | 6.8718 | 35 | 2.5289 |
| 2.3363 | 7.0256 | 36 | 2.5289 |
| 2.3691 | 7.2308 | 37 | 2.5284 |
| 2.3267 | 7.4359 | 38 | 2.5281 |
| 2.3389 | 7.6410 | 39 | 2.5281 |
| 2.1969 | 7.8462 | 40 | 2.5280 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
|