Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: maywell/Llama-3-Ko-Luxia-Instruct
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
  - path: "../data/output_fix_real.json"
    type: alpaca
    conversation: chatml
dataset_prepared_path: ../data/1min-luxia-data-pre
val_set_size: 0.1
output_dir: ../data/output/1min-luxia-8b
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: 
wandb_entity: 
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: null
tf32: false
gradient_checkpointing: true
early_stopping_patience: null
resume_from_checkpoint: null
local_rank: null
logging_steps: 1
xformers_attention: null
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size: null
eval_max_new_tokens: 128
saves_per_epoch: 1
save_total_limit: 4
debug: true
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>

data/output/1min-luxia-8b

This model is a fine-tuned version of maywell/Llama-3-Ko-Luxia-Instruct on the modified maywell/ko_youtube_transcription_sample dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5280

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 7
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 56
  • total_eval_batch_size: 7
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
2.9998 0.2051 1 3.0382
3.0081 0.4103 2 3.0379
2.9024 0.6154 3 3.0356
2.9814 0.8205 4 3.0280
2.9813 1.0256 5 3.0136
2.9137 1.1795 6 2.9918
2.9909 1.3846 7 2.9426
2.8925 1.5897 8 2.9047
2.825 1.7949 9 2.8790
2.8329 2.0 10 2.7949
2.6496 2.1538 11 2.7632
2.6857 2.3590 12 2.7388
2.679 2.5641 13 2.7193
2.6802 2.7692 14 2.6748
2.6269 2.9744 15 2.6452
2.5546 3.1282 16 2.6286
2.574 3.3333 17 2.6168
2.5548 3.5385 18 2.6054
2.5145 3.7436 19 2.5952
2.452 3.9487 20 2.5863
2.4647 4.1026 21 2.5786
2.423 4.3077 22 2.5715
2.4104 4.5128 23 2.5648
2.3664 4.7179 24 2.5592
2.4211 4.9231 25 2.5536
2.4291 5.0769 26 2.5492
2.3475 5.2821 27 2.5455
2.3665 5.4872 28 2.5417
2.3862 5.6923 29 2.5387
2.3784 5.8974 30 2.5360
2.354 6.0513 31 2.5343
2.3442 6.2564 32 2.5321
2.3499 6.4615 33 2.5312
2.3312 6.6667 34 2.5297
2.3551 6.8718 35 2.5289
2.3363 7.0256 36 2.5289
2.3691 7.2308 37 2.5284
2.3267 7.4359 38 2.5281
2.3389 7.6410 39 2.5281
2.1969 7.8462 40 2.5280

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for esunn/1min-scriptgen-luxia-8b

Finetuned
(3)
this model