Edit model card

Purpose: classifies protein sequence into Thermophilic (>= 60C) or Mesophilic (<30C) by host organism growth temperature.

Usage: Prepare sequences identically to using the original pretrained model:

from transformers import BertModelForSequenceClassification, BertTokenizer
import torch
import re
tokenizer = BertTokenizer.from_pretrained("evankomp/learn2therm", do_lower_case=False )
model = BertModelForSequenceClassification.from_pretrained("evankomp/learn2therm")
sequence_Example = "A E T C Z A O"
sequence_Example = re.sub(r"[UZOB]", "X", sequence_Example)
encoded_input = tokenizer(sequence_Example, return_tensors='pt')
output = torch.argmax(model(**encoded_input), dim=1)

1 indicates thermophilic, 0 mesophilic.

Training: ProteinBERT (Rostlab/prot_bert) was fine tuned on a class balanced version of learn2therm (see here), about 250k protein amino acid sequences.

Training parameters below:

TrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
do_eval=True,
do_predict=False,
do_train=True,
eval_accumulation_steps=25,
eval_delay=0,
eval_steps=6,
evaluation_strategy=steps,
fp16=True,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=25,
gradient_checkpointing=True,
greater_is_better=False,
group_by_length=False,
half_precision_backend=cuda_amp,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=True,
local_rank=0,
log_level=info,
log_level_replica=passive,
log_on_each_node=True,
logging_dir=./data/ogt_protein_classifier/model/runs/Jun19_12-16-35_g3070,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=1,
logging_strategy=steps,
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=loss,
mp_parameters=,
no_cuda=False,
num_train_epochs=2,
optim=adamw_hf,
optim_args=None,
output_dir=./data/ogt_protein_classifier/model,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=32,
per_device_train_batch_size=32,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard', 'codecarbon'],
resume_from_checkpoint=None,
run_name=./data/ogt_protein_classifier/model,
save_on_each_node=False,
save_steps=6,
save_strategy=steps,
save_total_limit=None,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
xpu_backend=None,
)

See the training repository for code.

Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.