|
--- |
|
license: mit |
|
datasets: |
|
- IlyaGusev/ru_turbo_alpaca |
|
- IlyaGusev/ru_turbo_alpaca_evol_instruct |
|
- IlyaGusev/ru_turbo_saiga |
|
- IlyaGusev/ru_sharegpt_cleaned |
|
- IlyaGusev/oasst1_ru_main_branch |
|
- IlyaGusev/gpt_roleplay_realm |
|
- lksy/ru_instruct_gpt4 |
|
language: |
|
- ru |
|
- en |
|
pipeline_tag: conversational |
|
tags: |
|
- ruGPT |
|
--- |
|
|
|
# ruGPT-3.5 13B GGML |
|
|
|
Welcome to the adapter-only version of ruGPT-3.5 13B GGML. This model is built upon the foundation of [ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B). |
|
|
|
📌 Important: This model was trained using settings identical to [GigaSaiga](https://huggingface.co/IlyaGusev/gigasaiga_lora), but incorporates additional dataset. |
|
|
|
🔗 Training code is [here](https://github.com/EvilFreelancer/ruGPT-3.5-13B-lora). |
|
|
|
## Code sample |
|
|
|
```python |
|
from llm_rs import AutoModel, GenerationConfig as GConfig |
|
from transformers import AutoTokenizer, GenerationConfig |
|
|
|
MODEL_NAME = "evilfreelancer/ruGPT-3.5-13B-ggml" |
|
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n" |
|
DEFAULT_SYSTEM_PROMPT = "Ты — ruGPT-3.5, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." |
|
|
|
class Conversation: |
|
def __init__( |
|
self, |
|
message_template=DEFAULT_MESSAGE_TEMPLATE, |
|
system_prompt=DEFAULT_SYSTEM_PROMPT, |
|
start_token_id=2, |
|
bot_token_id=46787 |
|
): |
|
self.message_template = message_template |
|
self.start_token_id = start_token_id |
|
self.bot_token_id = bot_token_id |
|
self.messages = [{ |
|
"role": "system", |
|
"content": system_prompt |
|
}] |
|
|
|
def get_start_token_id(self): |
|
return self.start_token_id |
|
|
|
def get_bot_token_id(self): |
|
return self.bot_token_id |
|
|
|
def add_user_message(self, message): |
|
self.messages.append({ |
|
"role": "user", |
|
"content": message |
|
}) |
|
|
|
def add_bot_message(self, message): |
|
self.messages.append({ |
|
"role": "bot", |
|
"content": message |
|
}) |
|
|
|
def get_prompt(self, tokenizer): |
|
final_text = "" |
|
for message in self.messages: |
|
message_text = self.message_template.format(**message) |
|
final_text += message_text |
|
final_text += tokenizer.decode([self.start_token_id, self.bot_token_id]) |
|
return final_text.strip() |
|
|
|
|
|
def generate(model, tokenizer, prompt, generation_config): |
|
data = tokenizer(prompt, return_tensors="pt") |
|
output = model.generate( |
|
prompt=prompt, |
|
generation_config=generation_config |
|
).text |
|
# print("output", output) |
|
output_ids = tokenizer(output, return_tensors="pt")['input_ids'][0] |
|
# print("output_ids", output_ids) |
|
# output_ids = output_ids[len(data["input_ids"][0]):] |
|
# print("output_ids", output_ids) |
|
output = tokenizer.decode(output_ids, skip_special_tokens=True) |
|
# print("output_ids", output) |
|
return output.strip() |
|
|
|
# Load base model |
|
model = AutoModel.from_pretrained( |
|
MODEL_NAME, |
|
model_file="ruGPT-3.5-13B-lora-q4_0.bin", |
|
) |
|
|
|
# Init basic tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained('ai-forever/ruGPT-3.5-13B', use_fast=False) |
|
generation_config = GenerationConfig.from_pretrained('ai-forever/ruGPT-3.5-13B') |
|
|
|
# Instantiate generator config |
|
g_config = GConfig() |
|
g_config.top_p = generation_config['top_p'] |
|
g_config.top_k = generation_config['top_k'] |
|
g_config.repetition_penalty = generation_config['repetition_penalty'] |
|
g_config.temperature = generation_config['temperature'] |
|
g_config.max_new_tokens = 200 |
|
|
|
# Start conversation |
|
conversation = Conversation() |
|
while True: |
|
user_message = input("User: ") |
|
|
|
if user_message.strip() == "/reset": |
|
conversation = Conversation() |
|
print("History reset completed!") |
|
continue |
|
|
|
if user_message.strip() == "": |
|
continue |
|
|
|
conversation.add_user_message(user_message) |
|
prompt = conversation.get_prompt(tokenizer) |
|
output = generate( |
|
model=model, |
|
tokenizer=tokenizer, |
|
prompt=prompt, |
|
generation_config=g_config |
|
) |
|
conversation.add_bot_message(output) |
|
print("ruGPT-3.5:", output) |
|
print() |
|
print("==============================") |
|
print() |
|
``` |
|
|
|
## Examples |
|
|
|
```text |
|
User: Привет! Почему трава зелёная? |
|
ruGPT-3.5: Трава зелёная благодаря хлорофиллу - пигменту растений, который поглощает световые волны определенной длины и преобразует их в энергию химических связей. Хлорофилл также обеспечивает растения питательными веществами из почвы через фотосинтез. |
|
``` |
|
|
|
```text |
|
User: Придумай стишок про нейросети. |
|
ruGPT-3.5: Нейросеть – это чудо науки, |
|
Она способна решать любые задачи. |
|
И если ты хочешь стать программистом, |
|
То лучше всего изучать нейронные сети. |
|
``` |
|
|
|
```text |
|
User: Высота самой высокой горы на Земле? |
|
ruGPT-3.5: Самая высокая гора на Земле находится в Гималаях и называется Эверест (8848 метров). |
|
``` |
|
|
|
```text |
|
User: Сколько максимум лет может прожить галопогосская черепаха? |
|
ruGPT-3.5: Галопогосские черепахи могут жить до 100 лет и более. Они являются одними из самых долгоживущих животных на планете. |
|
``` |
|
|
|
## 📚 Training Datasets |
|
|
|
The datasets utilized for training this model are consistent with those used for [Saiga-2](https://github.com/IlyaGusev/rulm). |
|
|
|
Here's the comprehensive list: |
|
|
|
- [ru_turbo_alpaca](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca) |
|
- [ru_turbo_alpaca_evol_instruct](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca_evol_instruct) |
|
- [ru_turbo_saiga](https://huggingface.co/datasets/IlyaGusev/ru_turbo_saiga) |
|
- [ru_sharegpt_cleaned](https://huggingface.co/datasets/IlyaGusev/ru_sharegpt_cleaned) |
|
- [oasst1_ru_main_branch](https://huggingface.co/datasets/IlyaGusev/oasst1_ru_main_branch) |
|
- [gpt_roleplay_realm](https://huggingface.co/datasets/IlyaGusev/gpt_roleplay_realm) |
|
- [ru_instruct_gpt4](https://huggingface.co/datasets/lksy/ru_instruct_gpt4) |
|
|
|
## 🛠 Training Procedure |
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
|
|
- quant_method: bitsandbytes |
|
- load_in_8bit: True |
|
- load_in_4bit: False |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: fp4 |
|
- bnb_4bit_use_double_quant: False |
|
- bnb_4bit_compute_dtype: float32 |
|
|
|
## ⚙️ Framework Versions |
|
|
|
Ensure you have the following framework versions for compatibility: |
|
|
|
- PyTorch 2.1.0 |
|
- PEFT 0.5.0 |
|
- bitsandbytes 0.41.1 |
|
- transformers 4.34.0 |
|
|
|
## Links |
|
|
|
- https://t.me/evilfreelancer |
|
- https://dzen.ru/evilfreelancer |
|
|