File size: 8,156 Bytes
b9f2647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5556482
b9f2647
 
 
 
 
 
 
 
 
5556482
 
 
 
 
 
 
 
 
 
b9f2647
 
5556482
b9f2647
 
5556482
b9f2647
 
 
 
5556482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f2647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5556482
 
 
b9f2647
5556482
 
 
 
 
 
 
b9f2647
 
 
 
 
 
 
 
 
 
 
 
 
5556482
b9f2647
5556482
b9f2647
5556482
 
b9f2647
 
5556482
 
 
 
 
 
 
 
b9f2647
 
5556482
b9f2647
 
5556482
b9f2647
 
5556482
 
b9f2647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5556482
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
Standard Transformer baseline for comparison with DTAT
Based on NanoGPT architecture with optimizations for enwik8
"""

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        self.head_size = config.n_embd // config.n_head
        
        # Key, Query, Value projections
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        
        # Regularization
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        
        # Flash attention optimization if available
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
        if not self.flash:
            print("WARNING: Flash Attention not available, using manual attention")
            # Manual causal mask
            self.register_buffer(
                "bias",
                torch.tril(torch.ones(config.block_size, config.block_size))
                .view(1, 1, config.block_size, config.block_size)
            )
    
    def forward(self, x):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality
        
        # Calculate query, key, values
        q, k, v  = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        
        # Causal self-attention with memory optimization
        if self.flash:
            # Use flash attention if available (faster and more memory efficient)
            with torch.backends.cuda.sdp_kernel(enable_flash=True):
                y = torch.nn.functional.scaled_dot_product_attention(
                    q, k, v,
                    attn_mask=None,
                    dropout_p=self.dropout if self.training else 0,
                    is_causal=True
                )
        else:
            # Manual attention
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v
        
        # Reshape and project back
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        return y

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = nn.Sequential(
            nn.Linear(config.n_embd, 4 * config.n_embd),
            nn.GELU(),
            nn.Linear(4 * config.n_embd, config.n_embd),
            nn.Dropout(config.dropout),
        )
    
    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class BaselineTransformer(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config
        
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            drop = nn.Dropout(config.dropout),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd)
        ))
        
        # Language modeling head
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        
        # Initialize weights
        self.apply(self._init_weights)
        # Apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
        
        # Report number of parameters
        print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
        
        # Gradient checkpointing flag
        self.gradient_checkpointing = False
    
    def gradient_checkpointing_enable(self):
        """Enable gradient checkpointing for memory efficiency"""
        self.gradient_checkpointing = True
    
    def gradient_checkpointing_disable(self):
        """Disable gradient checkpointing"""
        self.gradient_checkpointing = False
    
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    
    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        
        # Token and position embeddings
        tok_emb = self.transformer.wte(idx)
        pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
        pos_emb = self.transformer.wpe(pos)
        
        # Add embeddings and apply dropout
        x = self.transformer.drop(tok_emb + pos_emb)
        
        # Apply transformer blocks with optional gradient checkpointing
        if self.gradient_checkpointing and self.training:
            for block in self.transformer.h:
                x = torch.utils.checkpoint.checkpoint(block, x)
        else:
            for block in self.transformer.h:
                x = block(x)
        
        x = self.transformer.ln_f(x)
        
        # Language model head
        logits = self.lm_head(x)
        
        # Loss calculation (in BPC)
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
            loss = loss / math.log(2)  # Convert to BPC
        
        return logits, loss
    
    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            # forward the model to get the logits for the index in the sequence
            logits, _ = self(idx_cond)
            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :] / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1)
        
        return idx

    def get_num_params(self, non_embedding=True):
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding:
            n_params -= self.transformer.wpe.weight.numel()
        return n_params