llm / model_baseline.py
eyad-silx's picture
Update model_baseline.py
5556482 verified
"""
Standard Transformer baseline for comparison with DTAT
Based on NanoGPT architecture with optimizations for enwik8
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.head_size = config.n_embd // config.n_head
# Key, Query, Value projections
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
# Regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
# Flash attention optimization if available
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
if not self.flash:
print("WARNING: Flash Attention not available, using manual attention")
# Manual causal mask
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size)
)
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality
# Calculate query, key, values
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# Causal self-attention with memory optimization
if self.flash:
# Use flash attention if available (faster and more memory efficient)
with torch.backends.cuda.sdp_kernel(enable_flash=True):
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v,
attn_mask=None,
dropout_p=self.dropout if self.training else 0,
is_causal=True
)
else:
# Manual attention
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
# Reshape and project back
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.GELU(),
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.dropout),
)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class BaselineTransformer(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd)
))
# Language modeling head
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Initialize weights
self.apply(self._init_weights)
# Apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
# Report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
# Gradient checkpointing flag
self.gradient_checkpointing = False
def gradient_checkpointing_enable(self):
"""Enable gradient checkpointing for memory efficiency"""
self.gradient_checkpointing = True
def gradient_checkpointing_disable(self):
"""Disable gradient checkpointing"""
self.gradient_checkpointing = False
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
# Token and position embeddings
tok_emb = self.transformer.wte(idx)
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
pos_emb = self.transformer.wpe(pos)
# Add embeddings and apply dropout
x = self.transformer.drop(tok_emb + pos_emb)
# Apply transformer blocks with optional gradient checkpointing
if self.gradient_checkpointing and self.training:
for block in self.transformer.h:
x = torch.utils.checkpoint.checkpoint(block, x)
else:
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
# Language model head
logits = self.lm_head(x)
# Loss calculation (in BPC)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
loss = loss / math.log(2) # Convert to BPC
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
# forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1)
return idx
def get_num_params(self, non_embedding=True):
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.transformer.wpe.weight.numel()
return n_params