|
""" |
|
Standard Transformer baseline for comparison with DTAT |
|
Based on NanoGPT architecture with optimizations for enwik8 |
|
""" |
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.dropout = config.dropout |
|
self.head_size = config.n_embd // config.n_head |
|
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) |
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) |
|
|
|
|
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
self.resid_dropout = nn.Dropout(config.dropout) |
|
|
|
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') |
|
if not self.flash: |
|
print("WARNING: Flash Attention not available, using manual attention") |
|
|
|
self.register_buffer( |
|
"bias", |
|
torch.tril(torch.ones(config.block_size, config.block_size)) |
|
.view(1, 1, config.block_size, config.block_size) |
|
) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
|
|
if self.flash: |
|
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=True): |
|
y = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask=None, |
|
dropout_p=self.dropout if self.training else 0, |
|
is_causal=True |
|
) |
|
else: |
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
|
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
class Block(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(config.n_embd, 4 * config.n_embd), |
|
nn.GELU(), |
|
nn.Linear(4 * config.n_embd, config.n_embd), |
|
nn.Dropout(config.dropout), |
|
) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
class BaselineTransformer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.vocab_size is not None |
|
assert config.block_size is not None |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
drop = nn.Dropout(config.dropout), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = nn.LayerNorm(config.n_embd) |
|
)) |
|
|
|
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('c_proj.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) |
|
|
|
|
|
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
def gradient_checkpointing_enable(self): |
|
"""Enable gradient checkpointing for memory efficiency""" |
|
self.gradient_checkpointing = True |
|
|
|
def gradient_checkpointing_disable(self): |
|
"""Disable gradient checkpointing""" |
|
self.gradient_checkpointing = False |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
device = idx.device |
|
b, t = idx.size() |
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) |
|
pos_emb = self.transformer.wpe(pos) |
|
|
|
|
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
for block in self.transformer.h: |
|
x = torch.utils.checkpoint.checkpoint(block, x) |
|
else: |
|
for block in self.transformer.h: |
|
x = block(x) |
|
|
|
x = self.transformer.ln_f(x) |
|
|
|
|
|
logits = self.lm_head(x) |
|
|
|
|
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
loss = loss / math.log(2) |
|
|
|
return logits, loss |
|
|
|
@torch.no_grad() |
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
""" |
|
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete |
|
the sequence max_new_tokens times, feeding the predictions back into the model each time. |
|
Most likely you'll want to make sure to be in model.eval() mode of operation for this. |
|
""" |
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] |
|
|
|
logits, _ = self(idx_cond) |
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx |
|
|
|
def get_num_params(self, non_embedding=True): |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if non_embedding: |
|
n_params -= self.transformer.wpe.weight.numel() |
|
return n_params |
|
|