cyber_deberta / README.md
eysharaazia's picture
cyber_deberta
df86df9 verified
|
raw
history blame
2.59 kB
metadata
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: cyber_deberta
    results: []

cyber_deberta

This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4424
  • Accuracy: 0.8383
  • F1: 0.8222
  • Precision: 0.8189
  • Recall: 0.8260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5757 1.0 105 0.5760 0.6948 0.5676 0.6774 0.5811
0.4861 2.0 210 0.4837 0.7663 0.7328 0.7410 0.7272
0.4106 3.0 315 0.4200 0.8033 0.7800 0.7817 0.7785
0.3777 4.0 420 0.3928 0.8200 0.7953 0.8033 0.7893
0.2995 5.0 525 0.3835 0.8331 0.8187 0.8129 0.8272
0.3012 6.0 630 0.3786 0.8404 0.8222 0.8227 0.8217
0.26 7.0 735 0.3827 0.8399 0.8265 0.8202 0.8361
0.2388 8.0 840 0.4340 0.8346 0.8139 0.8180 0.8104
0.2092 9.0 945 0.4377 0.8388 0.8237 0.8192 0.8294
0.1957 10.0 1050 0.4424 0.8383 0.8222 0.8189 0.8260

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1