sentiment_bert / README.md
eysharaazia's picture
sentiment_bert
0dfd6e1 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: sentiment_bert
    results: []

sentiment_bert

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7469
  • Accuracy: 0.6802
  • F1: 0.6332
  • Precision: 0.6152
  • Recall: 0.6942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7975 1.0 94 0.9153 0.4158 0.4603 0.5512 0.5862
0.7765 2.0 188 0.8220 0.6583 0.6023 0.5894 0.6461
0.71 3.0 282 0.8345 0.6062 0.5908 0.5955 0.6858
0.6439 4.0 376 0.7753 0.6568 0.6241 0.6133 0.7010
0.6623 5.0 470 0.7469 0.6802 0.6332 0.6152 0.6942

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1