Update README.md with HF implementation

#5
by sanchit-gandhi HF staff - opened
Files changed (1) hide show
  1. README.md +70 -12
README.md CHANGED
@@ -6,9 +6,9 @@ license: cc-by-nc-4.0
6
 
7
  # MusicGen - Small - 300M
8
 
9
- Audiocraft provides the code and models for MusicGen, a simple and controllable model for music generation.
10
- MusicGen is a single stage auto-regressive Transformer model trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz.
11
- Unlike existing methods like MusicLM, MusicGen doesn't not require a self-supervised semantic representation, and it generates all 4 codebooks in one pass.
12
  By introducing a small delay between the codebooks, we show we can predict them in parallel, thus having only 50 auto-regressive steps per second of audio.
13
 
14
  MusicGen was published in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by *Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez*.
@@ -23,15 +23,75 @@ Four checkpoints are released:
23
 
24
  Try out MusicGen yourself!
25
 
26
- - <a target="_blank" href="https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing">
 
 
27
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
28
  </a>
29
 
30
- - <a target="_blank" href="https://huggingface.co/spaces/facebook/MusicGen">
31
- <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HugginFace"/>
 
 
 
 
 
 
 
 
32
  </a>
33
 
34
- - You can run MusicGen locally as well:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft)
37
  ```
@@ -46,17 +106,15 @@ apt get install ffmpeg
46
  3. Run the following Python code:
47
 
48
  ```py
49
- import torchaudio
50
-
51
  from audiocraft.models import MusicGen
52
  from audiocraft.data.audio import audio_write
53
 
54
- model = MusicGen.get_pretrained('small')
55
  model.set_generation_params(duration=8) # generate 8 seconds.
56
 
57
- descriptions = ['happy rock', 'energetic EDM', 'sad jazz']
58
 
59
- wav = model.generate(descriptions) # generates 3 samples.
60
 
61
  for idx, one_wav in enumerate(wav):
62
  # Will save under {idx}.wav, with loudness normalization at -14 db LUFS.
 
6
 
7
  # MusicGen - Small - 300M
8
 
9
+ MusicGen is a text-to-music model capable of genreating high-quality music samples conditioned on text descriptions or audio prompts.
10
+ It is a single stage auto-regressive Transformer model trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz.
11
+ Unlike existing methods, like MusicLM, MusicGen doesn't require a self-supervised semantic representation, and it generates all 4 codebooks in one pass.
12
  By introducing a small delay between the codebooks, we show we can predict them in parallel, thus having only 50 auto-regressive steps per second of audio.
13
 
14
  MusicGen was published in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by *Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez*.
 
23
 
24
  Try out MusicGen yourself!
25
 
26
+ * Audiocraft Colab:
27
+
28
+ <a target="_blank" href="https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing">
29
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
30
  </a>
31
 
32
+ * Hugging Face Colab:
33
+
34
+ <a target="_blank" href="https://colab.research.google.com/github/sanchit-gandhi/notebooks/blob/main/MusicGen.ipynb">
35
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
36
+ </a>
37
+
38
+ * Hugging Face Demo:
39
+
40
+ <a target="_blank" href="https://huggingface.co/spaces/facebook/MusicGen">
41
+ <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
42
  </a>
43
 
44
+ ## 🤗 Transformers Usage
45
+
46
+ You can run MusicGen locally with the 🤗 Transformers library from version 4.31.0 onwards.
47
+
48
+ 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main:
49
+
50
+ ```
51
+ pip install git+https://github.com/huggingface/transformers.git
52
+ ```
53
+
54
+ 2. Run the following Python code to generate text-conditional audio samples:
55
+
56
+ ```py
57
+ from transformers import AutoProcessor, MusicgenForConditionalGeneration
58
+
59
+
60
+ processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
61
+ model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
62
+
63
+ inputs = processor(
64
+ text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
65
+ padding=True,
66
+ return_tensors="pt",
67
+ )
68
+
69
+ audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
70
+ ```
71
+
72
+ 3. Listen to the audio samples either in an ipynb notebook:
73
+
74
+ ```py
75
+ from IPython.display import Audio
76
+
77
+ sampling_rate = model.config.audio_encoder.sampling_rate
78
+ Audio(audio_values[0].numpy(), rate=sampling_rate)
79
+ ```
80
+
81
+ Or save them as a `.wav` file using a third-party library, e.g. `scipy`:
82
+
83
+ ```py
84
+ import scipy
85
+
86
+ sampling_rate = model.config.audio_encoder.sampling_rate
87
+ scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].numpy())
88
+ ```
89
+
90
+ For more details on using the MusicGen model for inference using the 🤗 Transformers library, refer to the [MusicGen docs](https://huggingface.co/docs/transformers/model_doc/musicgen).
91
+
92
+ ## Audiocraft Usage
93
+
94
+ You can also run MusicGen locally through the original [Audiocraft library]((https://github.com/facebookresearch/audiocraft):
95
 
96
  1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft)
97
  ```
 
106
  3. Run the following Python code:
107
 
108
  ```py
 
 
109
  from audiocraft.models import MusicGen
110
  from audiocraft.data.audio import audio_write
111
 
112
+ model = MusicGen.get_pretrained("small")
113
  model.set_generation_params(duration=8) # generate 8 seconds.
114
 
115
+ descriptions = ["happy rock", "energetic EDM"]
116
 
117
+ wav = model.generate(descriptions) # generates 2 samples.
118
 
119
  for idx, one_wav in enumerate(wav):
120
  # Will save under {idx}.wav, with loudness normalization at -14 db LUFS.