RAG

This is the RAG-Sequence Model of the the paper Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.

The model is a uncased model, which means that capital letters are simply converted to lower-case letters.

The model consits of a question_encoder, retriever and a generator. The retriever extracts relevant passages from the wiki_dpr train datasets, which is linked above. The question_encoder and retriever are based on facebook/dpr-question_encoder-single-nq-base and facebook/bart-large, which were jointly finetuned on on the wiki_dpr QA dataset in an end-to-end fashion.

Usage:

Note: In the usage example below only the dummy retriever of wiki_dpr is used because the complete lecagy index requires over 75 GB of RAM. The model can generate answers to any factoid question as follows:

from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration 
 
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") 
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True) 
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever) 
 
input_dict = tokenizer.prepare_seq2seq_batch("how many countries are in europe", return_tensors="pt") 

generated = model.generate(input_ids=input_dict["input_ids"]) 
print(tokenizer.batch_decode(generated, skip_special_tokens=True)[0]) 

# should give 54 => google says either 44 or 51
Downloads last month
27,286
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train facebook/rag-sequence-nq

Spaces using facebook/rag-sequence-nq 14