|
# Wav2Vec2 Acoustic Model fine-tuned on LibriSpeech |
|
|
|
Original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. |
|
|
|
Paper: https://arxiv.org/abs/2006.11477 |
|
|
|
## Usage |
|
|
|
Make sure you are working on [this branch](https://github.com/huggingface/transformers/tree/add_wav2vec) (which will be merged to master soon hopefully) of transformers: |
|
|
|
```bash |
|
$ git checkout add_wav2vec |
|
``` |
|
|
|
In the following, we'll show a simple example of how the model can be used for automatic speech recognition. |
|
|
|
First, let's load the model |
|
|
|
```python |
|
from transformers import AutoModelForMaskedLM |
|
|
|
model = AutoModelForMaskedLM.from_pretrained("patrickvonplaten/wav2vec2-base-960h") |
|
|
|
``` |
|
|
|
Next, let's load a dummy librispeech dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
import soundfile as sf |
|
|
|
libri_speech_dummy = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") |
|
|
|
def map_to_array(batch): |
|
speech_array, _ = sf.read(batch["file"]) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
libri_speech_dummy = libri_speech_dummy.map(map_to_array, remove_columns=["file"]) |
|
|
|
# check out dataset |
|
print(libri_speech_dummy) |
|
|
|
input_speech_16kHz = libri_speech_dummy[2]["speech"] |
|
expected_trans = libri_speech_dummy[2]["text"] |
|
``` |
|
|
|
Cool, now we can run an inference pass to retrieve the logits: |
|
|
|
```python |
|
import torch |
|
logits = model(torch.tensor(input_speech_16kHz)[None, :]) |
|
|
|
# use highest probability logits |
|
pred_ids = torch.argmax(logits[0], axis=-1) |
|
``` |
|
|
|
Finally, let's decode the prediction. |
|
Let's create a simple CTC-Decoder: |
|
|
|
```python |
|
import numpy as np |
|
from itertools import groupby |
|
|
|
class Decoder: |
|
def __init__(self, json_dict): |
|
self.dict = json_dict |
|
self.look_up = np.asarray(list(self.dict.keys())) |
|
|
|
def decode(self, ids): |
|
converted_tokens = self.look_up[ids] |
|
fused_tokens = [tok[0] for tok in groupby(converted_tokens)] |
|
output = ' '.join(''.join(''.join(fused_tokens).split("<s>")).split("|")) |
|
return output |
|
``` |
|
|
|
and instantiate with the corresponding dict. |
|
|
|
```python |
|
# hard-coded json dict taken from: https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt |
|
json_dict = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31} |
|
|
|
decoder = Decoder(json_dict=json_dict) |
|
``` |
|
|
|
and decode the result |
|
|
|
```python |
|
pred_trans = decoder.decode(pred_ids) |
|
|
|
print("Prediction:\n", pred_trans) |
|
print("\n" + 50 * "=" + "\n") |
|
print("Correct result:\n", expected_trans) |
|
``` |
|
|
|
๐ |