|
--- |
|
license: apache-2.0 |
|
tags: |
|
- art |
|
- pytorch |
|
- super-resolution |
|
pipeline_tag: image-to-image |
|
--- |
|
# AuraSR-v2 |
|
![aurasr example](https://storage.googleapis.com/falserverless/gallery/aurasr-animated.webp) |
|
|
|
GAN-based Super-Resolution for upscaling generated images, a variation of the [GigaGAN](https://mingukkang.github.io/GigaGAN/) paper for image-conditioned upscaling. Torch implementation is based on the unofficial [lucidrains/gigagan-pytorch](https://github.com/lucidrains/gigagan-pytorch) repository. |
|
|
|
## Usage |
|
|
|
```bash |
|
$ pip install aura-sr |
|
``` |
|
|
|
```python |
|
from aura_sr import AuraSR |
|
|
|
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2") |
|
``` |
|
|
|
```python |
|
import requests |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
def load_image_from_url(url): |
|
response = requests.get(url) |
|
image_data = BytesIO(response.content) |
|
return Image.open(image_data) |
|
|
|
image = load_image_from_url("https://mingukkang.github.io/GigaGAN/static/images/iguana_output.jpg").resize((256, 256)) |
|
upscaled_image = aura_sr.upscale_4x_overlapped(image) |
|
``` |