upernet-swin-small-finetuned

This model is a fine-tuned version of openmmlab/upernet-swin-small on an jpodivin/plantorgans. It achieves the following results on the evaluation set:

  • Loss: 0.2923
  • Mean Iou: 0.4108
  • Mean Accuracy: 0.5178
  • Overall Accuracy: 0.7337
  • Accuracy Void: nan
  • Accuracy Fruit: 0.8691
  • Accuracy Leaf: 0.7085
  • Accuracy Flower: 0.0
  • Accuracy Stem: 0.4937
  • Iou Void: 0.0
  • Iou Fruit: 0.8653
  • Iou Leaf: 0.7034
  • Iou Flower: 0.0
  • Iou Stem: 0.4855
  • Median Iou: 0.4855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Void Accuracy Fruit Accuracy Leaf Accuracy Flower Accuracy Stem Iou Void Iou Fruit Iou Leaf Iou Flower Iou Stem Median Iou
0.2456 1.0 460 0.3706 0.4121 0.5223 0.7804 nan 0.8522 0.8235 0.0 0.4134 0.0 0.8452 0.8099 0.0 0.4053 0.4053
0.246 2.0 920 0.3135 0.3821 0.4813 0.6912 nan 0.8038 0.6825 0.0 0.4388 0.0 0.8016 0.6772 0.0 0.4319 0.4319
0.3118 3.0 1380 0.2923 0.4108 0.5178 0.7337 nan 0.8691 0.7085 0.0 0.4937 0.0 0.8653 0.7034 0.0 0.4855 0.4855

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
9
Safetensors
Model size
81.2M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for farmaieu/upernet-swin-small-finetuned-plantorgans

Finetuned
(2)
this model

Dataset used to train farmaieu/upernet-swin-small-finetuned-plantorgans