whisper-sm-el-xs / README.md
farsipal's picture
Upload 22 files
52ed255
---
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: whisper-sm-el-xs
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 el
type: mozilla-foundation/common_voice_11_0
config: el
split: test
args: el
metrics:
- name: Wer
type: wer
value: 20.63521545319465
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper-Small (el) for Transcription
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 el dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4805
- Wer: 20.6352
## Model description
This model is trained for transcription on the Greek subset on mozilla-foundation/common_voice_11_0 interleaved splits train+eval
## Intended uses & limitations
This is part of the Whisper Finetuning Event (December 2022)
## Training and evaluation data
Training used interleaved splits: train + evaluation.
Evaluation was done on the test split.
Data was streamed from Hugging Face's Hub.
## Training procedure
The script used has been uploaded in the files of this space
The command to run it was:
```
python ./run_speech_recognition_seq2seq_streaming.py \
--model_name_or_path "openai/whisper-small" \
--model_revision "main" \
--do_train True \
--do_eval True \
--use_auth_token False \
--freeze_encoder False \
--model_index_name "whisper-sm-el-xs" \
--dataset_name "mozilla-foundation/common_voice_11_0" \
--dataset_config_name "el" \
--audio_column_name "audio" \
--text_column_name "sentence" \
--max_duration_in_seconds 30 \
--train_split_name "train+validation" \
--eval_split_name "test" \
--do_lower_case False \
--do_remove_punctuation False \
--do_normalize_eval True \
--language "greek" \
--task "transcribe" \
--shuffle_buffer_size 500 \
--output_dir "./data/finetuningRuns/whisper-sm-el-xs" \
--per_device_train_batch_size 16 \
--gradient_accumulation_steps 4 \
--learning_rate 1e-5 \
--warmup_steps 500 \
--max_steps 5000 \
--gradient_checkpointing True \
--fp16 True \
--evaluation_strategy "steps" \
--per_device_eval_batch_size 8 \
--predict_with_generate True \
--generation_max_length 225 \
--save_steps 1000 \
--eval_steps 1000 \
--logging_steps 25 \
--report_to "tensorboard" \
--load_best_model_at_end True \
--metric_for_best_model "wer" \
--greater_is_better False \
--push_to_hub False \
--overwrite_output_dir True
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0024 | 18.01 | 1000 | 0.4246 | 21.0438 |
| 0.0003 | 37.01 | 2000 | 0.4805 | 20.6352 |
| 0.0001 | 56.01 | 3000 | 0.5102 | 20.8395 |
| 0.0001 | 75.0 | 4000 | 0.5296 | 21.0717 |
| 0.0001 | 94.0 | 5000 | 0.5375 | 21.0253 |
Here is the summary from the log of the run:
```
***** train metrics *****
epoch = 94.0
train_loss = 0.0222
train_runtime = 23:06:13.19
train_samples_per_second = 3.847
train_steps_per_second = 0.06
12/08/2022 11:20:17 - INFO - __main__ - *** Evaluate ***
***** eval metrics *****
epoch = 94.0
eval_loss = 0.4805
eval_runtime = 0:23:03.68
eval_samples_per_second = 1.226
eval_steps_per_second = 0.153
eval_wer = 20.6352
Thu 08 Dec 2022 11:43:22 AM EST
```
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1.dev0
- Tokenizers 0.12.1