tiny-clinicalbert-medical-text-classification

This model is a fine-tuned version of nlpie/tiny-clinicalbert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1588
  • Accuracy: 0.236
  • Precision: 0.2048
  • Recall: 0.236
  • F1: 0.2109

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.9902 1.0 250 3.0201 0.274 0.0880 0.274 0.1318
2.4558 2.0 500 2.6033 0.341 0.1392 0.341 0.1922
2.4627 3.0 750 2.4332 0.368 0.2003 0.368 0.2252
2.2983 4.0 1000 2.3126 0.365 0.2212 0.365 0.2495
2.1395 5.0 1250 2.2385 0.349 0.2100 0.349 0.2518
1.8919 6.0 1500 2.1892 0.339 0.2176 0.339 0.2490
1.9892 7.0 1750 2.1364 0.336 0.2310 0.336 0.2643
1.8569 8.0 2000 2.1441 0.321 0.2316 0.321 0.2532
1.9182 9.0 2250 2.1263 0.309 0.2185 0.309 0.2417
1.6594 10.0 2500 2.1234 0.262 0.2180 0.262 0.2245
1.5966 11.0 2750 2.1176 0.256 0.2149 0.256 0.2197
1.6185 12.0 3000 2.1578 0.243 0.2126 0.243 0.2140
1.3881 13.0 3250 2.1588 0.236 0.2048 0.236 0.2109

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
21
Safetensors
Model size
13.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fawern/tiny-clinicalbert-medical-text-classification

Finetuned
(1)
this model