license: apache-2.0
UK & Ireland Accent Classification Model
This model classifies UK & Ireland accents using feature extraction from Yamnet.
Yamnet Model
Yamnet is an audio event classifier trained on the AudioSet dataset to predict audio events from the AudioSet ontology. It is available on TensorFlow Hub.
Yamnet accepts a 1-D tensor of audio samples with a sample rate of 16 kHz.
As output, the model returns a 3-tuple:
- Scores of shape
(N, 521)
representing the scores of the 521 classes. - Embeddings of shape
(N, 1024)
. - The log-mel spectrogram of the entire audio frame.
We will use the embeddings, which are the features extracted from the audio samples, as the input to our dense model.
For more detailed information about Yamnet, please refer to its TensorFlow Hub page.
Dense Model
The dense model that we used consists of:
- An input layer which is embedding output of the Yamnet classifier.
- 4 dense hidden layers and 4 dropout layers.
- An output dense layer.
Results
The model achieved the following results:
Results | Training | Validation |
---|---|---|
Accuracy | 55% | 51% |
AUC | 0.9090 | 0.8911 |
d-prime | 1.887 | 1.743 |
And the confusion matrix for the validation set is:
Dataset
The dataset used is the Crowdsourced high-quality UK and Ireland English Dialect speech data set which consists of a total of 17,877 high-quality audio wav files.
This dataset includes over 31 hours of recording from 120 vounteers who self-identify as native speakers of Southern England, Midlands, Northern England, Wales, Scotland and Ireland.
For more info, please refer to the above link or to the following paper: Open-source Multi-speaker Corpora of the English Accents in the British Isles
How to use
Having already installed huggingface_hub
using:
pip install -U -q huggingface_hub
Use the following in your code:
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("fbadine/uk_ireland_accent_classification")
Demo
A demo is available in HuggingFace Spaces ...