peft-prefix-jul / README.md
fgiauna's picture
update model card README.md
918e189
|
raw
history blame
1.61 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: peft-prefix-jul
    results: []

peft-prefix-jul

This model is a fine-tuned version of Jean-Baptiste/camembert-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0862
  • Loc: {'precision': 0.7229437229437229, 'recall': 0.7731481481481481, 'f1': 0.7472035794183446, 'number': 216}
  • Misc: {'precision': 0.5555555555555556, 'recall': 0.375, 'f1': 0.44776119402985076, 'number': 40}
  • Org: {'precision': 0.83, 'recall': 0.83, 'f1': 0.83, 'number': 200}
  • Per: {'precision': 0.8324324324324325, 'recall': 0.7857142857142857, 'f1': 0.8083989501312335, 'number': 196}
  • Overall Precision: 0.7807
  • Overall Recall: 0.7699
  • Overall F1: 0.7753
  • Overall Accuracy: 0.9822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3