metadata
license: mit
tags:
- generated_from_trainer
model-index:
- name: peft-prefix-jul
results: []
peft-prefix-jul
This model is a fine-tuned version of Jean-Baptiste/camembert-ner on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0862
- Loc: {'precision': 0.7229437229437229, 'recall': 0.7731481481481481, 'f1': 0.7472035794183446, 'number': 216}
- Misc: {'precision': 0.5555555555555556, 'recall': 0.375, 'f1': 0.44776119402985076, 'number': 40}
- Org: {'precision': 0.83, 'recall': 0.83, 'f1': 0.83, 'number': 200}
- Per: {'precision': 0.8324324324324325, 'recall': 0.7857142857142857, 'f1': 0.8083989501312335, 'number': 196}
- Overall Precision: 0.7807
- Overall Recall: 0.7699
- Overall F1: 0.7753
- Overall Accuracy: 0.9822
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3