Edit model card

xmelus/invoices-roberta-large

This model is a fine-tuned version of xlm-roberta-large on dataset . It achieves the following results on the evaluation set:

  • Train Loss: 2.2317
  • Train Accuracy: 0.0883
  • Validation Loss: 2.1699
  • Validation Accuracy: 0.0899
  • Finished epochs: 13

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 754, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
11.4516 0.0165 4.5115 0.0501 0
3.6182 0.0628 2.8398 0.0752 1
2.2317 0.0883 2.1699 0.0899 2
1.9700 0.0942 2.5529 0.0831 3
1.9714 0.0941 2.4961 0.0843 4
1.9682 0.0940 2.5089 0.0839 5
1.9546 0.0944 2.5029 0.0841 6
1.9808 0.0939 2.5140 0.0838 7
1.9728 0.0937 2.5212 0.0833 8
1.9655 0.0941 2.5575 0.0838 9
1.9708 0.0935 2.5419 0.0833 10
1.9693 0.0940 2.5304 0.0836 11
1.9614 0.0941 2.5176 0.0835 12

Framework versions

  • Transformers 4.21.2
  • TensorFlow 2.8.2
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.