|
Fine-tuned standard easyocr model using the following dataset: https://huggingface.co/datasets/fimu-docproc-research/born_digital with addition of another 20 000 examples of generated IBANs/account numbers. |
|
|
|
|
|
train_log: https://huggingface.co/fimu-docproc-research/standard_0.1.1_EasyOcrEngine/blob/main/log_train.txt |
|
|
|
options: https://huggingface.co/fimu-docproc-research/standard_0.1.1_EasyOcrEngine/blob/main/opt.txt |
|
|
|
|
|
```python |
|
>>> import easyocr |
|
>>> import torch |
|
>>> from huggingface_hub import hf_hub_download |
|
|
|
>>> # Initialize default easyocr model |
|
>>> reader = easyocr.Reader(['en', 'cs', 'sk', 'pl']) |
|
>>> # Download weights of recognition module. |
|
>>> model_dir = hf_hub_download(repo_id="fimu-docproc-research/standard_0.1.1_EasyOcrEngine", filename="weights.pth") |
|
>>> # Load the weights |
|
>>> state_dict = torch.load(model_dir, map_location="cuda") |
|
>>> # Load the state dictionary into the model |
|
>>> reader.recognizer.load_state_dict(state_dict) |
|
|
|
>>> # Typical usage of easyocr model to get predictions |
|
>>> res = reader.readtext(input_img) |
|
``` |
|
|
|
### Example usage (without GPU): |
|
|
|
```python |
|
>>> from collections import OrderedDict |
|
|
|
>>> import easyocr |
|
>>> import torch |
|
>>> from huggingface_hub import hf_hub_download |
|
|
|
>>> # Initialize default easyocr model |
|
>>> reader = easyocr.Reader(['en', 'cs', 'sk', 'pl'], quantize=False, gpu=False) |
|
>>> # Download weights of recognition module. |
|
>>> model_dir = hf_hub_download(repo_id="fimu-docproc-research/standard_0.1.1_EasyOcrEngine", filename="weights.pth") |
|
>>> # Load the weights |
|
>>> state_dict = torch.load(model_dir, map_location="cpu") |
|
>>> # There is need to remove first 7 characters due to easyocr library |
|
>>> new_state_dict = OrderedDict() |
|
>>> for key, value in state_dict.items(): |
|
>>> new_key = key[7:] |
|
>>> new_state_dict[new_key] = value |
|
|
|
>>> # Load the state dictionary into the model |
|
>>> reader.recognizer.load_state_dict(new_state_dict) |
|
|
|
>>> # Typical usage of easyocr model to get predictions |
|
>>> res = reader.readtext(input_img) |
|
``` |