Safetensors
FLUX.1-dev-fp8-flumina / quantize_swap_and_dispatch.py
aredden's picture
Updates..
c4a514f
raw
history blame
9.11 kB
from fnmatch import fnmatch
from typing import List, Optional, Union
import torch
from click import secho
from cublas_ops import CublasLinear
from quanto import (
QModuleMixin,
quantize_module,
QLinear,
QConv2d,
QLayerNorm,
)
from quanto.tensor import Optimizer, qtype, qfloat8, qint4, qint8
from torch import nn
class QuantizationDtype:
qfloat8 = "qfloat8"
qint2 = "qint2"
qint4 = "qint4"
qint8 = "qint8"
def into_qtype(qtype: QuantizationDtype) -> qtype:
if qtype == QuantizationDtype.qfloat8:
return qfloat8
elif qtype == QuantizationDtype.qint4:
return qint4
elif qtype == QuantizationDtype.qint8:
return qint8
else:
raise ValueError(f"Unknown qtype: {qtype}")
def _set_module_by_name(parent_module, name, child_module):
module_names = name.split(".")
if len(module_names) == 1:
setattr(parent_module, name, child_module)
else:
parent_module_name = name[: name.rindex(".")]
parent_module = parent_module.get_submodule(parent_module_name)
setattr(parent_module, module_names[-1], child_module)
def _quantize_submodule(
model: torch.nn.Module,
name: str,
module: torch.nn.Module,
weights: Optional[Union[str, qtype]] = None,
activations: Optional[Union[str, qtype]] = None,
optimizer: Optional[Optimizer] = None,
):
if isinstance(module, CublasLinear):
return 0
num_quant = 0
qmodule = quantize_module(
module, weights=weights, activations=activations, optimizer=optimizer
)
if qmodule is not None:
_set_module_by_name(model, name, qmodule)
# num_quant += 1
qmodule.name = name
for name, param in module.named_parameters():
# Save device memory by clearing parameters
setattr(module, name, None)
del param
num_quant += 1
return num_quant
def _quantize(
model: torch.nn.Module,
weights: Optional[Union[str, qtype]] = None,
activations: Optional[Union[str, qtype]] = None,
optimizer: Optional[Optimizer] = None,
include: Optional[Union[str, List[str]]] = None,
exclude: Optional[Union[str, List[str]]] = None,
):
"""Quantize the specified model submodules
Recursively quantize the submodules of the specified parent model.
Only modules that have quantized counterparts will be quantized.
If include patterns are specified, the submodule name must match one of them.
If exclude patterns are specified, the submodule must not match one of them.
Include or exclude patterns are Unix shell-style wildcards which are NOT regular expressions. See
https://docs.python.org/3/library/fnmatch.html for more details.
Note: quantization happens in-place and modifies the original model and its descendants.
Args:
model (`torch.nn.Module`): the model whose submodules will be quantized.
weights (`Optional[Union[str, qtype]]`): the qtype for weights quantization.
activations (`Optional[Union[str, qtype]]`): the qtype for activations quantization.
include (`Optional[Union[str, List[str]]]`):
Patterns constituting the allowlist. If provided, module names must match at
least one pattern from the allowlist.
exclude (`Optional[Union[str, List[str]]]`):
Patterns constituting the denylist. If provided, module names must not match
any patterns from the denylist.
"""
num_quant = 0
if include is not None:
include = [include] if isinstance(include, str) else exclude
if exclude is not None:
exclude = [exclude] if isinstance(exclude, str) else exclude
for name, m in model.named_modules():
if include is not None and not any(
fnmatch(name, pattern) for pattern in include
):
continue
if exclude is not None and any(fnmatch(name, pattern) for pattern in exclude):
continue
num_quant += _quantize_submodule(
model,
name,
m,
weights=weights,
activations=activations,
optimizer=optimizer,
)
return num_quant
def _freeze(model):
for name, m in model.named_modules():
if isinstance(m, QModuleMixin):
m.freeze()
def _is_block_compilable(module: nn.Module) -> bool:
for module in module.modules():
if _is_quantized(module):
return False
if _is_quantized(module):
return False
return True
def _simple_swap_linears(model: nn.Module, root_name: str = ""):
for name, module in model.named_children():
if (
_is_linear(module)
and hasattr(module, "weight")
and module.weight is not None
and module.weight.data is not None
):
weights = module.weight.data
bias = None
if module.bias is not None:
bias = module.bias.data
with torch.device(module.weight.device):
new_cublas = CublasLinear(
module.in_features,
module.out_features,
bias=bias is not None,
device=module.weight.device,
dtype=module.weight.dtype,
)
new_cublas.weight.data = weights
if bias is not None:
new_cublas.bias.data = bias
setattr(model, name, new_cublas)
if root_name == "":
secho(f"Replaced {name} with CublasLinear", fg="green")
else:
secho(f"Replaced {root_name}.{name} with CublasLinear", fg="green")
else:
if root_name == "":
_simple_swap_linears(module, str(name))
else:
_simple_swap_linears(module, str(root_name) + "." + str(name))
def _full_quant(
model, max_quants=24, current_quants=0, quantization_dtype: qtype = qfloat8
):
if current_quants < max_quants:
current_quants += _quantize(model, quantization_dtype)
_freeze(model)
print(f"Quantized {current_quants} modules with {quantization_dtype}")
return current_quants
def _is_linear(module: nn.Module) -> bool:
return not isinstance(
module, (QLinear, QConv2d, QLayerNorm, CublasLinear)
) and isinstance(module, nn.Linear)
def _is_quantized(module: nn.Module) -> bool:
return isinstance(module, (QLinear, QConv2d, QLayerNorm))
def quantize_and_dispatch_to_device(
flow_model: nn.Module,
flux_device: torch.device = torch.device("cuda"),
flux_dtype: torch.dtype = torch.float16,
num_layers_to_quantize: int = 20,
quantization_dtype: QuantizationDtype = QuantizationDtype.qfloat8,
compile_blocks: bool = True,
compile_extras: bool = True,
quantize_extras: bool = False,
replace_linears: bool = True,
):
quant_type = into_qtype(quantization_dtype)
num_quanted = 0
flow_model = flow_model.requires_grad_(False).eval().type(flux_dtype)
for block in flow_model.single_blocks:
block.cuda(flux_device)
if num_quanted < num_layers_to_quantize:
num_quanted = _full_quant(
block,
num_layers_to_quantize,
num_quanted,
quantization_dtype=quant_type,
)
for block in flow_model.double_blocks:
block.cuda(flux_device)
if num_quanted < num_layers_to_quantize:
num_quanted = _full_quant(
block,
num_layers_to_quantize,
num_quanted,
quantization_dtype=quant_type,
)
to_gpu_extras = [
"vector_in",
"img_in",
"txt_in",
"time_in",
"guidance_in",
"final_layer",
"pe_embedder",
]
if compile_blocks:
for i, block in enumerate(flow_model.single_blocks):
if _is_block_compilable(block):
block.compile()
secho(f"Compiled block {i}", fg="green")
for i, block in enumerate(flow_model.double_blocks):
if _is_block_compilable(block):
block.compile()
secho(f"Compiled block {i}", fg="green")
if replace_linears:
_simple_swap_linears(flow_model)
for extra in to_gpu_extras:
m_extra = getattr(flow_model, extra).cuda(flux_device).type(flux_dtype)
if compile_extras:
if extra in ["time_in", "vector_in", "guidance_in", "final_layer"]:
m_extra.compile()
secho(
f"Compiled extra {extra} -- {m_extra.__class__.__name__}",
fg="green",
)
elif quantize_extras:
if not isinstance(m_extra, nn.Linear):
_full_quant(
m_extra,
current_quants=num_quanted,
max_quants=num_layers_to_quantize,
quantization_dtype=quantization_dtype,
)
return flow_model