Safetensors
aredden's picture
initial commit
d9aea20
raw
history blame
8.28 kB
import json
from pathlib import Path
from typing import Optional
import torch
from modules.autoencoder import AutoEncoder, AutoEncoderParams
from modules.conditioner import HFEmbedder
from modules.flux_model import Flux, FluxParams
from safetensors.torch import load_file as load_sft
from enum import StrEnum
from pydantic import BaseModel, ConfigDict
from loguru import logger
class ModelVersion(StrEnum):
flux_dev = "flux-dev"
flux_schnell = "flux-schnell"
class ModelSpec(BaseModel):
version: ModelVersion
params: FluxParams
ae_params: AutoEncoderParams
ckpt_path: str | None
ae_path: str | None
repo_id: str | None
repo_flow: str | None
repo_ae: str | None
text_enc_max_length: int = 512
text_enc_path: str | None
text_enc_device: str | torch.device | None = "cuda:0"
ae_device: str | torch.device | None = "cuda:0"
flux_device: str | torch.device | None = "cuda:0"
flow_dtype: str = "float16"
ae_dtype: str = "bfloat16"
text_enc_dtype: str = "bfloat16"
num_to_quant: Optional[int] = 20
model_config: ConfigDict = {
"arbitrary_types_allowed": True,
"use_enum_values": True,
}
def load_models(config: ModelSpec) -> tuple[Flux, AutoEncoder, HFEmbedder, HFEmbedder]:
flow = load_flow_model(config)
ae = load_autoencoder(config)
clip, t5 = load_text_encoders(config)
return flow, ae, clip, t5
def parse_device(device: str | torch.device | None) -> torch.device:
if isinstance(device, str):
return torch.device(device)
elif isinstance(device, torch.device):
return device
else:
return torch.device("cuda:0")
def into_dtype(dtype: str) -> torch.dtype:
if dtype == "float16":
return torch.float16
elif dtype == "bfloat16":
return torch.bfloat16
elif dtype == "float32":
return torch.float32
else:
raise ValueError(f"Invalid dtype: {dtype}")
def into_device(device: str | torch.device | None) -> torch.device:
if isinstance(device, str):
return torch.device(device)
elif isinstance(device, torch.device):
return device
elif isinstance(device, int):
return torch.device(f"cuda:{device}")
else:
return torch.device("cuda:0")
def load_config(
name: ModelVersion = ModelVersion.flux_dev,
flux_path: str | None = None,
ae_path: str | None = None,
text_enc_path: str | None = None,
text_enc_device: str | torch.device | None = None,
ae_device: str | torch.device | None = None,
flux_device: str | torch.device | None = None,
flow_dtype: str = "float16",
ae_dtype: str = "bfloat16",
text_enc_dtype: str = "bfloat16",
num_to_quant: Optional[int] = 20,
):
text_enc_device = str(parse_device(text_enc_device))
ae_device = str(parse_device(ae_device))
flux_device = str(parse_device(flux_device))
return ModelSpec(
version=name,
repo_id=(
"black-forest-labs/FLUX.1-dev"
if name == ModelVersion.flux_dev
else "black-forest-labs/FLUX.1-schnell"
),
repo_flow=(
"flux1-dev.sft" if name == ModelVersion.flux_dev else "flux1-schnell.sft"
),
repo_ae="ae.sft",
ckpt_path=flux_path,
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_path=ae_path,
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
text_enc_path=text_enc_path,
text_enc_device=text_enc_device,
ae_device=ae_device,
flux_device=flux_device,
flow_dtype=flow_dtype,
ae_dtype=ae_dtype,
text_enc_dtype=text_enc_dtype,
text_enc_max_length=512 if name == ModelVersion.flux_dev else 256,
num_to_quant=num_to_quant,
)
def load_config_from_path(path: str) -> ModelSpec:
path_path = Path(path)
if not path_path.exists():
raise ValueError(f"Path {path} does not exist")
if not path_path.is_file():
raise ValueError(f"Path {path} is not a file")
return ModelSpec(**json.loads(path_path.read_text()))
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
if len(missing) > 0 and len(unexpected) > 0:
logger.warning(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
logger.warning("\n" + "-" * 79 + "\n")
logger.warning(
f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)
)
elif len(missing) > 0:
logger.warning(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
logger.warning(
f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)
)
def load_flow_model(config: ModelSpec) -> Flux:
ckpt_path = config.ckpt_path
with torch.device("meta"):
model = Flux(config.params, dtype=into_dtype(config.flow_dtype)).type(
into_dtype(config.flow_dtype)
)
if ckpt_path is not None:
# load_sft doesn't support torch.device
sd = load_sft(ckpt_path, device="cpu")
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return model
def load_text_encoders(config: ModelSpec) -> tuple[HFEmbedder, HFEmbedder]:
clip = HFEmbedder(
"openai/clip-vit-large-patch14",
max_length=77,
torch_dtype=into_dtype(config.text_enc_dtype),
device=into_device(config.text_enc_device),
)
t5 = HFEmbedder(
config.text_enc_path,
max_length=config.text_enc_max_length,
torch_dtype=into_dtype(config.text_enc_dtype),
device=into_device(config.text_enc_device).index or 0,
)
return clip, t5
def load_autoencoder(config: ModelSpec) -> AutoEncoder:
ckpt_path = config.ae_path
with torch.device("meta" if ckpt_path is not None else config.ae_device):
ae = AutoEncoder(config.ae_params)
if ckpt_path is not None:
sd = load_sft(ckpt_path, device=str(config.ae_device))
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return ae
class LoadedModels(BaseModel):
flow: Flux
ae: AutoEncoder
clip: HFEmbedder
t5: HFEmbedder
config: ModelSpec
model_config = {
"arbitrary_types_allowed": True,
"use_enum_values": True,
}
def load_models_from_config_path(
path: str,
) -> LoadedModels:
config = load_config_from_path(path)
clip, t5 = load_text_encoders(config)
return LoadedModels(
flow=load_flow_model(config),
ae=load_autoencoder(config),
clip=clip,
t5=t5,
config=config,
)
def load_models_from_config(config: ModelSpec) -> LoadedModels:
clip, t5 = load_text_encoders(config)
return LoadedModels(
flow=load_flow_model(config),
ae=load_autoencoder(config),
clip=clip,
t5=t5,
config=config,
)
if __name__ == "__main__":
p = "/big/generator-ui/flux-testing/flux/model-dir/flux1-dev.sft"
ae_p = "/big/generator-ui/flux-testing/flux/model-dir/ae.sft"
config = load_config(
ModelVersion.flux_dev,
flux_path=p,
ae_path=ae_p,
text_enc_path="city96/t5-v1_1-xxl-encoder-bf16",
text_enc_device="cuda:0",
ae_device="cuda:0",
flux_device="cuda:0",
flow_dtype="float16",
ae_dtype="bfloat16",
text_enc_dtype="bfloat16",
num_to_quant=20,
)
with open("configs/config-dev-cuda0.json", "w") as f:
json.dump(config.model_dump(), f, indent=2)
print(config)