Edit model card

ast-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3724
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8858 1.0 112 0.5691 0.8
0.5797 2.0 225 0.6960 0.74
0.7178 3.0 337 0.4546 0.85
0.0858 4.0 450 0.4605 0.86
0.0048 5.0 562 0.6531 0.86
0.0218 6.0 675 0.3650 0.91
0.0831 7.0 787 0.4631 0.88
0.0002 8.0 900 0.4604 0.87
0.1109 9.0 1012 0.4126 0.91
0.0003 10.0 1125 0.3681 0.92
0.0001 11.0 1237 0.3977 0.9
0.0001 12.0 1350 0.3466 0.91
0.0001 13.0 1462 0.3682 0.91
0.0001 14.0 1575 0.3695 0.9
0.0 15.0 1687 0.3664 0.91
0.0001 16.0 1800 0.3714 0.9
0.0 17.0 1912 0.3718 0.9
0.0001 18.0 2025 0.3730 0.9
0.0001 19.0 2137 0.3717 0.9
0.0 19.91 2240 0.3724 0.9

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fisheggg/ast-finetuned-gtzan

Finetuned
(94)
this model

Dataset used to train fisheggg/ast-finetuned-gtzan

Evaluation results