English NER in Flair (large model)

This is the large 4-class NER model for English that ships with Flair.

F1-Score: 94,36 (corrected CoNLL-03)

Predicts 4 tags:

tag meaning
PER person name
LOC location name
ORG organization name
MISC other name

Based on document-level XLM-R embeddings and FLERT.


Demo: How to use in Flair

Requires: Flair (pip install flair)

from flair.data import Sentence
from flair.models import SequenceTagger

# load tagger
tagger = SequenceTagger.load("flair/ner-english-large")

# make example sentence
sentence = Sentence("George Washington went to Washington")

# predict NER tags
tagger.predict(sentence)

# print sentence
print(sentence)

# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
    print(entity)

This yields the following output:

Span [1,2]: "George Washington"   [βˆ’ Labels: PER (1.0)]
Span [5]: "Washington"   [βˆ’ Labels: LOC (1.0)]

So, the entities "George Washington" (labeled as a person) and "Washington" (labeled as a location) are found in the sentence "George Washington went to Washington".


Training: Script to train this model

The following Flair script was used to train this model:

import torch

# 1. get the corpus
from flair.datasets import CONLL_03

corpus = CONLL_03()

# 2. what tag do we want to predict?
tag_type = 'ner'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize fine-tuneable transformer embeddings WITH document context
from flair.embeddings import TransformerWordEmbeddings

embeddings = TransformerWordEmbeddings(
    model='xlm-roberta-large',
    layers="-1",
    subtoken_pooling="first",
    fine_tune=True,
    use_context=True,
)

# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
from flair.models import SequenceTagger

tagger = SequenceTagger(
    hidden_size=256,
    embeddings=embeddings,
    tag_dictionary=tag_dictionary,
    tag_type='ner',
    use_crf=False,
    use_rnn=False,
    reproject_embeddings=False,
)

# 6. initialize trainer with AdamW optimizer
from flair.trainers import ModelTrainer

trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)

# 7. run training with XLM parameters (20 epochs, small LR)
from torch.optim.lr_scheduler import OneCycleLR

trainer.train('resources/taggers/ner-english-large',
              learning_rate=5.0e-6,
              mini_batch_size=4,
              mini_batch_chunk_size=1,
              max_epochs=20,
              scheduler=OneCycleLR,
              embeddings_storage_mode='none',
              weight_decay=0.,
              )

)

Cite

Please cite the following paper when using this model.

@misc{schweter2020flert,
    title={FLERT: Document-Level Features for Named Entity Recognition},
    author={Stefan Schweter and Alan Akbik},
    year={2020},
    eprint={2011.06993},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Issues?

The Flair issue tracker is available here.

Downloads last month
411,214
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train flair/ner-english-large

Spaces using flair/ner-english-large 16