|
--- |
|
tags: |
|
- flair |
|
- token-classification |
|
- sequence-tagger-model |
|
language: de |
|
datasets: |
|
- legal |
|
widget: |
|
- text: "Herr W. verstieß gegen § 36 Abs. 7 IfSG." |
|
--- |
|
|
|
## NER for German Legal Text in Flair (default model) |
|
|
|
This is the legal NER model for German that ships with [Flair](https://github.com/flairNLP/flair/). |
|
|
|
F1-Score: **96,35** (LER German dataset) |
|
|
|
Predicts 19 tags: |
|
|
|
| **tag** | **meaning** | |
|
|---------------------------------|-----------| |
|
| AN | Anwalt | |
|
| EUN | Europäische Norm | |
|
| GS | Gesetz | |
|
| GRT | Gericht | |
|
| INN | Institution | |
|
| LD | Land | |
|
| LDS | Landschaft | |
|
| LIT | Literatur | |
|
| MRK | Marke | |
|
| ORG | Organisation | |
|
| PER | Person | |
|
| RR | Richter | |
|
| RS | Rechtssprechung | |
|
| ST | Stadt | |
|
| STR | Straße | |
|
| UN | Unternehmen | |
|
| VO | Verordnung | |
|
| VS | Vorschrift | |
|
| VT | Vertrag | |
|
|
|
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. |
|
|
|
More details on the Legal NER dataset [here](https://github.com/elenanereiss/Legal-Entity-Recognition) |
|
|
|
--- |
|
|
|
### Demo: How to use in Flair |
|
|
|
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) |
|
|
|
```python |
|
from flair.data import Sentence |
|
from flair.models import SequenceTagger |
|
|
|
# load tagger |
|
tagger = SequenceTagger.load("flair/ner-german-legal") |
|
|
|
# make example sentence (don't use tokenizer since Rechtstexte are badly handled) |
|
sentence = Sentence("Herr W. verstieß gegen § 36 Abs. 7 IfSG.", use_tokenizer=False) |
|
|
|
|
|
# predict NER tags |
|
tagger.predict(sentence) |
|
|
|
# print sentence |
|
print(sentence) |
|
|
|
# print predicted NER spans |
|
print('The following NER tags are found:') |
|
# iterate over entities and print |
|
for entity in sentence.get_spans('ner'): |
|
print(entity) |
|
|
|
``` |
|
|
|
This yields the following output: |
|
``` |
|
Span [2]: "W." [− Labels: PER (0.9911)] |
|
Span [5,6,7,8,9]: "§ 36 Abs. 7 IfSG." [− Labels: GS (0.5353)] |
|
|
|
``` |
|
|
|
So, the entities "*W.*" (labeled as a **person**) and "*§ 36 Abs. 7 IfSG*" (labeled as a **Gesetz**) are found in the sentence "*Herr W. verstieß gegen § 36 Abs. 7 IfSG.*". |
|
|
|
|
|
--- |
|
|
|
### Training: Script to train this model |
|
|
|
The following Flair script was used to train this model: |
|
|
|
```python |
|
from flair.data import Corpus |
|
from flair.datasets import LER_GERMAN |
|
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings |
|
|
|
# 1. get the corpus |
|
corpus: Corpus = LER_GERMAN() |
|
|
|
# 2. what tag do we want to predict? |
|
tag_type = 'ner' |
|
|
|
# 3. make the tag dictionary from the corpus |
|
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) |
|
|
|
# 4. initialize each embedding we use |
|
embedding_types = [ |
|
|
|
# GloVe embeddings |
|
WordEmbeddings('de'), |
|
|
|
# contextual string embeddings, forward |
|
FlairEmbeddings('de-forward'), |
|
|
|
# contextual string embeddings, backward |
|
FlairEmbeddings('de-backward'), |
|
] |
|
|
|
# embedding stack consists of Flair and GloVe embeddings |
|
embeddings = StackedEmbeddings(embeddings=embedding_types) |
|
|
|
# 5. initialize sequence tagger |
|
from flair.models import SequenceTagger |
|
|
|
tagger = SequenceTagger(hidden_size=256, |
|
embeddings=embeddings, |
|
tag_dictionary=tag_dictionary, |
|
tag_type=tag_type) |
|
|
|
# 6. initialize trainer |
|
from flair.trainers import ModelTrainer |
|
|
|
trainer = ModelTrainer(tagger, corpus) |
|
|
|
# 7. run training |
|
trainer.train('resources/taggers/ner-german-legal', |
|
train_with_dev=True, |
|
max_epochs=150) |
|
``` |
|
|
|
|
|
|
|
--- |
|
|
|
### Cite |
|
|
|
Please cite the following papers when using this model. |
|
|
|
``` |
|
@inproceedings{leitner2019fine, |
|
author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider}, |
|
title = {{Fine-grained Named Entity Recognition in Legal Documents}}, |
|
booktitle = {Semantic Systems. The Power of AI and Knowledge |
|
Graphs. Proceedings of the 15th International Conference |
|
(SEMANTiCS 2019)}, |
|
year = 2019, |
|
pages = {272--287}, |
|
pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}} |
|
``` |
|
|
|
``` |
|
@inproceedings{akbik2018coling, |
|
title={Contextual String Embeddings for Sequence Labeling}, |
|
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, |
|
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, |
|
pages = {1638--1649}, |
|
year = {2018} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
### Issues? |
|
|
|
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/). |
|
|