Files changed (4) hide show
  1. README.md +9 -10
  2. loss.tsv +151 -151
  3. pytorch_model.bin +2 -2
  4. training.log +0 -0
README.md CHANGED
@@ -3,10 +3,10 @@ tags:
3
  - flair
4
  - token-classification
5
  - sequence-tagger-model
6
- language:
7
- - en
8
- - de
9
- - fr
10
  - it
11
  - nl
12
  - pl
@@ -26,7 +26,7 @@ widget:
26
 
27
  This is the default multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/).
28
 
29
- F1-Score: **98,47** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)
30
 
31
  Predicts universal POS tags:
32
 
@@ -94,14 +94,14 @@ Token[6]: "say" → VERB (0.9998)
94
  Token[7]: "." → PUNCT (1.0)
95
  ```
96
 
97
- So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*".
98
 
99
 
100
  ---
101
 
102
  ### Training: Script to train this model
103
 
104
- The following Flair script was used to train this model:
105
 
106
  ```python
107
  from flair.data import MultiCorpus
@@ -129,11 +129,10 @@ corpus = MultiCorpus([
129
  tag_type = 'upos'
130
 
131
  # 3. make the tag dictionary from the corpus
132
- tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
133
 
134
  # 4. initialize each embedding we use
135
  embedding_types = [
136
-
137
  # contextual string embeddings, forward
138
  FlairEmbeddings('multi-forward'),
139
 
@@ -141,7 +140,7 @@ embedding_types = [
141
  FlairEmbeddings('multi-backward'),
142
  ]
143
 
144
- # embedding stack consists of Flair and GloVe embeddings
145
  embeddings = StackedEmbeddings(embeddings=embedding_types)
146
 
147
  # 5. initialize sequence tagger
 
3
  - flair
4
  - token-classification
5
  - sequence-tagger-model
6
+ language:
7
+ - en
8
+ - de
9
+ - fr
10
  - it
11
  - nl
12
  - pl
 
26
 
27
  This is the default multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/).
28
 
29
+ F1-Score: **96.87** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)
30
 
31
  Predicts universal POS tags:
32
 
 
94
  Token[7]: "." → PUNCT (1.0)
95
  ```
96
 
97
+ So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*".
98
 
99
 
100
  ---
101
 
102
  ### Training: Script to train this model
103
 
104
+ The following Flair script was used to train this model:
105
 
106
  ```python
107
  from flair.data import MultiCorpus
 
129
  tag_type = 'upos'
130
 
131
  # 3. make the tag dictionary from the corpus
132
+ tag_dictionary = corpus.make_label_dictionary(label_type=tag_type)
133
 
134
  # 4. initialize each embedding we use
135
  embedding_types = [
 
136
  # contextual string embeddings, forward
137
  FlairEmbeddings('multi-forward'),
138
 
 
140
  FlairEmbeddings('multi-backward'),
141
  ]
142
 
143
+ # embedding stack consists of Flair embeddings
144
  embeddings = StackedEmbeddings(embeddings=embedding_types)
145
 
146
  # 5. initialize sequence tagger
loss.tsv CHANGED
@@ -1,151 +1,151 @@
1
- EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS TRAIN_PRECISION TRAIN_RECALL TRAIN_ACCURACY TRAIN_F-SCORE DEV_LOSS DEV_PRECISION DEV_RECALL DEV_ACCURACY DEV_F-SCORE TEST_LOSS TEST_PRECISION TEST_RECALL TEST_ACCURACY TEST_F-SCORE
2
- 0 11:12:55 0 0.1000 0.7210021345162283 _ _ _ _ _ _ _ _ _ _ 0.8481 0.8481 0.8481 0.8481
3
- 1 11:36:23 0 0.1000 0.4978160696237081 _ _ _ _ _ _ _ _ _ _ 0.878 0.878 0.878 0.878
4
- 2 11:59:52 0 0.1000 0.43429711483610006 _ _ _ _ _ _ _ _ _ _ 0.8967 0.8967 0.8967 0.8967
5
- 3 12:23:17 0 0.1000 0.39905918871464724 _ _ _ _ _ _ _ _ _ _ 0.904 0.904 0.904 0.904
6
- 4 12:46:45 0 0.1000 0.3742375968457236 _ _ _ _ _ _ _ _ _ _ 0.9095 0.9095 0.9095 0.9095
7
- 5 13:10:21 0 0.1000 0.35342702350133975 _ _ _ _ _ _ _ _ _ _ 0.9169 0.9169 0.9169 0.9169
8
- 6 13:33:49 0 0.1000 0.33980307603623794 _ _ _ _ _ _ _ _ _ _ 0.9202 0.9202 0.9202 0.9202
9
- 7 13:57:21 0 0.1000 0.32579335047085706 _ _ _ _ _ _ _ _ _ _ 0.9232 0.9232 0.9232 0.9232
10
- 8 14:20:44 0 0.1000 0.31598528568207496 _ _ _ _ _ _ _ _ _ _ 0.9276 0.9276 0.9276 0.9276
11
- 9 14:44:11 0 0.1000 0.30771679594818646 _ _ _ _ _ _ _ _ _ _ 0.9303 0.9303 0.9303 0.9303
12
- 10 15:07:37 0 0.1000 0.29935787006847003 _ _ _ _ _ _ _ _ _ _ 0.933 0.933 0.933 0.933
13
- 11 15:31:00 0 0.1000 0.2921474775313901 _ _ _ _ _ _ _ _ _ _ 0.9343 0.9343 0.9343 0.9343
14
- 12 15:54:34 0 0.1000 0.2871364236691731 _ _ _ _ _ _ _ _ _ _ 0.9354 0.9354 0.9354 0.9354
15
- 13 16:17:59 0 0.1000 0.28096626128222385 _ _ _ _ _ _ _ _ _ _ 0.9367 0.9367 0.9367 0.9367
16
- 14 16:41:22 0 0.1000 0.2746626851626277 _ _ _ _ _ _ _ _ _ _ 0.9388 0.9388 0.9388 0.9388
17
- 15 17:04:53 0 0.1000 0.2702156779567315 _ _ _ _ _ _ _ _ _ _ 0.939 0.939 0.939 0.939
18
- 16 17:28:14 0 0.1000 0.2677499098394409 _ _ _ _ _ _ _ _ _ _ 0.94 0.94 0.94 0.94
19
- 17 17:51:41 0 0.1000 0.26327742492058104 _ _ _ _ _ _ _ _ _ _ 0.9414 0.9414 0.9414 0.9414
20
- 18 18:15:15 0 0.1000 0.25877575904336814 _ _ _ _ _ _ _ _ _ _ 0.9432 0.9432 0.9432 0.9432
21
- 19 18:38:40 0 0.1000 0.2537475148621729 _ _ _ _ _ _ _ _ _ _ 0.9429 0.9429 0.9429 0.9429
22
- 20 19:02:06 0 0.1000 0.2526139328870411 _ _ _ _ _ _ _ _ _ _ 0.9433 0.9433 0.9433 0.9433
23
- 21 19:25:36 0 0.1000 0.25058489056542393 _ _ _ _ _ _ _ _ _ _ 0.9454 0.9454 0.9454 0.9454
24
- 22 19:49:01 0 0.1000 0.24793850796675693 _ _ _ _ _ _ _ _ _ _ 0.9459 0.9459 0.9459 0.9459
25
- 23 20:12:32 0 0.1000 0.24369133532522563 _ _ _ _ _ _ _ _ _ _ 0.9458 0.9458 0.9458 0.9458
26
- 24 20:35:57 0 0.1000 0.24157939653927565 _ _ _ _ _ _ _ _ _ _ 0.9464 0.9464 0.9464 0.9464
27
- 25 20:59:37 0 0.1000 0.23970980893528734 _ _ _ _ _ _ _ _ _ _ 0.9477 0.9477 0.9477 0.9477
28
- 26 21:23:02 0 0.1000 0.23712054908323255 _ _ _ _ _ _ _ _ _ _ 0.9474 0.9474 0.9474 0.9474
29
- 27 21:46:26 0 0.1000 0.2367942676861768 _ _ _ _ _ _ _ _ _ _ 0.9464 0.9464 0.9464 0.9464
30
- 28 22:09:57 0 0.1000 0.2333034627188289 _ _ _ _ _ _ _ _ _ _ 0.9481 0.9481 0.9481 0.9481
31
- 29 22:33:23 0 0.1000 0.23126234505920054 _ _ _ _ _ _ _ _ _ _ 0.949 0.949 0.949 0.949
32
- 30 22:56:56 0 0.1000 0.22932123181550282 _ _ _ _ _ _ _ _ _ _ 0.9484 0.9484 0.9484 0.9484
33
- 31 23:20:45 0 0.1000 0.2273743192486796 _ _ _ _ _ _ _ _ _ _ 0.9492 0.9492 0.9492 0.9492
34
- 32 23:44:10 0 0.1000 0.2255119944040062 _ _ _ _ _ _ _ _ _ _ 0.9485 0.9485 0.9485 0.9485
35
- 33 00:07:34 0 0.1000 0.22409818432363 _ _ _ _ _ _ _ _ _ _ 0.95 0.95 0.95 0.95
36
- 34 00:30:57 0 0.1000 0.22151199458546297 _ _ _ _ _ _ _ _ _ _ 0.9506 0.9506 0.9506 0.9506
37
- 35 00:54:24 0 0.1000 0.22155024732969722 _ _ _ _ _ _ _ _ _ _ 0.9512 0.9512 0.9512 0.9512
38
- 36 01:17:51 1 0.1000 0.2205742845282017 _ _ _ _ _ _ _ _ _ _ 0.9511 0.9511 0.9511 0.9511
39
- 37 01:41:20 0 0.1000 0.21852846494206418 _ _ _ _ _ _ _ _ _ _ 0.9511 0.9511 0.9511 0.9511
40
- 38 02:04:56 0 0.1000 0.21719484818274226 _ _ _ _ _ _ _ _ _ _ 0.9519 0.9519 0.9519 0.9519
41
- 39 02:28:19 0 0.1000 0.21682299653427595 _ _ _ _ _ _ _ _ _ _ 0.9509 0.9509 0.9509 0.9509
42
- 40 02:51:41 0 0.1000 0.21704343444362736 _ _ _ _ _ _ _ _ _ _ 0.9524 0.9524 0.9524 0.9524
43
- 41 03:15:08 1 0.1000 0.21260865162828568 _ _ _ _ _ _ _ _ _ _ 0.9526 0.9526 0.9526 0.9526
44
- 42 03:38:43 0 0.1000 0.21280285771466917 _ _ _ _ _ _ _ _ _ _ 0.9525 0.9525 0.9525 0.9525
45
- 43 04:02:11 1 0.1000 0.21139400303602057 _ _ _ _ _ _ _ _ _ _ 0.9532 0.9532 0.9532 0.9532
46
- 44 04:25:50 0 0.1000 0.2103025148200453 _ _ _ _ _ _ _ _ _ _ 0.9534 0.9534 0.9534 0.9534
47
- 45 04:49:17 0 0.1000 0.21047394277326975 _ _ _ _ _ _ _ _ _ _ 0.954 0.954 0.954 0.954
48
- 46 05:12:43 1 0.1000 0.20889954569228175 _ _ _ _ _ _ _ _ _ _ 0.9538 0.9538 0.9538 0.9538
49
- 47 05:36:11 0 0.1000 0.2081116257508449 _ _ _ _ _ _ _ _ _ _ 0.9534 0.9534 0.9534 0.9534
50
- 48 05:59:47 0 0.1000 0.20735290020180713 _ _ _ _ _ _ _ _ _ _ 0.9544 0.9544 0.9544 0.9544
51
- 49 06:23:19 0 0.1000 0.2051314154268594 _ _ _ _ _ _ _ _ _ _ 0.9545 0.9545 0.9545 0.9545
52
- 50 06:46:47 0 0.1000 0.20549383197211374 _ _ _ _ _ _ _ _ _ _ 0.9542 0.9542 0.9542 0.9542
53
- 51 07:10:30 1 0.1000 0.20552540715422096 _ _ _ _ _ _ _ _ _ _ 0.9541 0.9541 0.9541 0.9541
54
- 52 07:34:01 2 0.1000 0.2022382171174598 _ _ _ _ _ _ _ _ _ _ 0.9545 0.9545 0.9545 0.9545
55
- 53 07:57:33 0 0.1000 0.2034686032817135 _ _ _ _ _ _ _ _ _ _ 0.955 0.955 0.955 0.955
56
- 54 08:20:55 1 0.1000 0.2022125936710602 _ _ _ _ _ _ _ _ _ _ 0.9547 0.9547 0.9547 0.9547
57
- 55 08:44:21 0 0.1000 0.20195547892638116 _ _ _ _ _ _ _ _ _ _ 0.9548 0.9548 0.9548 0.9548
58
- 56 09:07:58 0 0.1000 0.2010047433371816 _ _ _ _ _ _ _ _ _ _ 0.9549 0.9549 0.9549 0.9549
59
- 57 09:31:27 0 0.1000 0.20029620328622608 _ _ _ _ _ _ _ _ _ _ 0.9554 0.9554 0.9554 0.9554
60
- 58 09:55:07 0 0.1000 0.200410623315139 _ _ _ _ _ _ _ _ _ _ 0.9555 0.9555 0.9555 0.9555
61
- 59 10:18:35 1 0.1000 0.19885549961224236 _ _ _ _ _ _ _ _ _ _ 0.9559 0.9559 0.9559 0.9559
62
- 60 10:42:00 0 0.1000 0.1969310509000975 _ _ _ _ _ _ _ _ _ _ 0.9562 0.9562 0.9562 0.9562
63
- 61 11:05:28 0 0.1000 0.19752888845380348 _ _ _ _ _ _ _ _ _ _ 0.956 0.956 0.956 0.956
64
- 62 11:28:57 1 0.1000 0.19763092688816444 _ _ _ _ _ _ _ _ _ _ 0.9562 0.9562 0.9562 0.9562
65
- 63 11:52:29 2 0.1000 0.19646054708820582 _ _ _ _ _ _ _ _ _ _ 0.9561 0.9561 0.9561 0.9561
66
- 64 12:16:10 0 0.1000 0.19479624992381397 _ _ _ _ _ _ _ _ _ _ 0.9568 0.9568 0.9568 0.9568
67
- 65 12:39:43 0 0.1000 0.19464160452930918 _ _ _ _ _ _ _ _ _ _ 0.9566 0.9566 0.9566 0.9566
68
- 66 13:03:14 0 0.1000 0.19548884070323036 _ _ _ _ _ _ _ _ _ _ 0.9568 0.9568 0.9568 0.9568
69
- 67 13:26:40 1 0.1000 0.19475973537225158 _ _ _ _ _ _ _ _ _ _ 0.9569 0.9569 0.9569 0.9569
70
- 68 13:50:07 2 0.1000 0.19439746426108423 _ _ _ _ _ _ _ _ _ _ 0.9563 0.9563 0.9563 0.9563
71
- 69 14:13:32 0 0.1000 0.19370671081686655 _ _ _ _ _ _ _ _ _ _ 0.9564 0.9564 0.9564 0.9564
72
- 70 14:36:59 0 0.1000 0.19183528371686911 _ _ _ _ _ _ _ _ _ _ 0.9576 0.9576 0.9576 0.9576
73
- 71 15:00:41 0 0.1000 0.19287951452775143 _ _ _ _ _ _ _ _ _ _ 0.9572 0.9572 0.9572 0.9572
74
- 72 15:24:07 1 0.1000 0.19141927684724075 _ _ _ _ _ _ _ _ _ _ 0.9576 0.9576 0.9576 0.9576
75
- 73 15:47:38 0 0.1000 0.19037402588275787 _ _ _ _ _ _ _ _ _ _ 0.957 0.957 0.957 0.957
76
- 74 16:11:07 0 0.1000 0.19046012064034978 _ _ _ _ _ _ _ _ _ _ 0.9571 0.9571 0.9571 0.9571
77
- 75 16:34:34 1 0.1000 0.1903303293783702 _ _ _ _ _ _ _ _ _ _ 0.9572 0.9572 0.9572 0.9572
78
- 76 16:58:12 0 0.1000 0.19066792594619927 _ _ _ _ _ _ _ _ _ _ 0.9573 0.9573 0.9573 0.9573
79
- 77 17:22:06 1 0.1000 0.18952273385669854 _ _ _ _ _ _ _ _ _ _ 0.9573 0.9573 0.9573 0.9573
80
- 78 17:45:42 0 0.1000 0.18825725826713122 _ _ _ _ _ _ _ _ _ _ 0.9579 0.9579 0.9579 0.9579
81
- 79 18:09:17 0 0.1000 0.18935545475904278 _ _ _ _ _ _ _ _ _ _ 0.958 0.958 0.958 0.958
82
- 80 18:32:52 1 0.1000 0.1879875679614127 _ _ _ _ _ _ _ _ _ _ 0.958 0.958 0.958 0.958
83
- 81 18:56:27 0 0.1000 0.18778680214824128 _ _ _ _ _ _ _ _ _ _ 0.9584 0.9584 0.9584 0.9584
84
- 82 19:20:01 0 0.1000 0.18746448831188942 _ _ _ _ _ _ _ _ _ _ 0.9585 0.9585 0.9585 0.9585
85
- 83 19:43:32 0 0.1000 0.18597292849562683 _ _ _ _ _ _ _ _ _ _ 0.9578 0.9578 0.9578 0.9578
86
- 84 20:07:22 0 0.1000 0.1860005068718633 _ _ _ _ _ _ _ _ _ _ 0.9582 0.9582 0.9582 0.9582
87
- 85 20:30:58 1 0.1000 0.18633582194462925 _ _ _ _ _ _ _ _ _ _ 0.9583 0.9583 0.9583 0.9583
88
- 86 20:54:31 2 0.1000 0.18582389025507537 _ _ _ _ _ _ _ _ _ _ 0.9584 0.9584 0.9584 0.9584
89
- 87 21:18:02 0 0.1000 0.18583678361469438 _ _ _ _ _ _ _ _ _ _ 0.9584 0.9584 0.9584 0.9584
90
- 88 21:41:34 1 0.1000 0.18316908685788577 _ _ _ _ _ _ _ _ _ _ 0.9586 0.9586 0.9586 0.9586
91
- 89 22:05:12 0 0.1000 0.18534635613074252 _ _ _ _ _ _ _ _ _ _ 0.958 0.958 0.958 0.958
92
- 90 22:28:54 1 0.1000 0.18384256521973166 _ _ _ _ _ _ _ _ _ _ 0.9587 0.9587 0.9587 0.9587
93
- 91 22:52:27 2 0.1000 0.18405010121052887 _ _ _ _ _ _ _ _ _ _ 0.9588 0.9588 0.9588 0.9588
94
- 92 23:15:59 0 0.0500 0.17556561555019948 _ _ _ _ _ _ _ _ _ _ 0.9603 0.9603 0.9603 0.9603
95
- 93 23:39:32 0 0.0500 0.16994592318872956 _ _ _ _ _ _ _ _ _ _ 0.9603 0.9603 0.9603 0.9603
96
- 94 00:03:02 0 0.0500 0.16775754866871675 _ _ _ _ _ _ _ _ _ _ 0.9605 0.9605 0.9605 0.9605
97
- 95 00:26:30 0 0.0500 0.167797892421305 _ _ _ _ _ _ _ _ _ _ 0.9608 0.9608 0.9608 0.9608
98
- 96 00:50:08 1 0.0500 0.1654042344597402 _ _ _ _ _ _ _ _ _ _ 0.961 0.961 0.961 0.961
99
- 97 01:13:54 0 0.0500 0.1638417892170097 _ _ _ _ _ _ _ _ _ _ 0.9611 0.9611 0.9611 0.9611
100
- 98 01:37:21 0 0.0500 0.1628716704711418 _ _ _ _ _ _ _ _ _ _ 0.9615 0.9615 0.9615 0.9615
101
- 99 02:00:54 0 0.0500 0.16135923191805748 _ _ _ _ _ _ _ _ _ _ 0.9614 0.9614 0.9614 0.9614
102
- 100 02:24:23 0 0.0500 0.16102960881517717 _ _ _ _ _ _ _ _ _ _ 0.9614 0.9614 0.9614 0.9614
103
- 101 02:47:58 0 0.0500 0.1597511584858509 _ _ _ _ _ _ _ _ _ _ 0.9612 0.9612 0.9612 0.9612
104
- 102 03:11:33 0 0.0500 0.158750009230552 _ _ _ _ _ _ _ _ _ _ 0.9613 0.9613 0.9613 0.9613
105
- 103 03:35:16 0 0.0500 0.1598144823844623 _ _ _ _ _ _ _ _ _ _ 0.9617 0.9617 0.9617 0.9617
106
- 104 03:58:47 1 0.0500 0.15843389315256012 _ _ _ _ _ _ _ _ _ _ 0.962 0.962 0.962 0.962
107
- 105 04:22:18 0 0.0500 0.1582850175641563 _ _ _ _ _ _ _ _ _ _ 0.9619 0.9619 0.9619 0.9619
108
- 106 04:45:55 0 0.0500 0.15683828063503616 _ _ _ _ _ _ _ _ _ _ 0.9619 0.9619 0.9619 0.9619
109
- 107 05:09:22 0 0.0500 0.15554793214376686 _ _ _ _ _ _ _ _ _ _ 0.962 0.962 0.962 0.962
110
- 108 05:32:50 0 0.0500 0.15559760241105475 _ _ _ _ _ _ _ _ _ _ 0.9618 0.9618 0.9618 0.9618
111
- 109 05:56:18 1 0.0500 0.15592738710675413 _ _ _ _ _ _ _ _ _ _ 0.9619 0.9619 0.9619 0.9619
112
- 110 06:19:57 2 0.0500 0.1559649915345551 _ _ _ _ _ _ _ _ _ _ 0.9625 0.9625 0.9625 0.9625
113
- 111 06:43:28 0 0.0250 0.15047709863006958 _ _ _ _ _ _ _ _ _ _ 0.9626 0.9626 0.9626 0.9626
114
- 112 07:06:53 0 0.0250 0.14901342020445227 _ _ _ _ _ _ _ _ _ _ 0.9626 0.9626 0.9626 0.9626
115
- 113 07:30:23 0 0.0250 0.14785490136836343 _ _ _ _ _ _ _ _ _ _ 0.9629 0.9629 0.9629 0.9629
116
- 114 07:53:54 0 0.0250 0.14793952625254247 _ _ _ _ _ _ _ _ _ _ 0.963 0.963 0.963 0.963
117
- 115 08:17:22 1 0.0250 0.14614440136844034 _ _ _ _ _ _ _ _ _ _ 0.9629 0.9629 0.9629 0.9629
118
- 116 08:41:03 0 0.0250 0.14456831456853306 _ _ _ _ _ _ _ _ _ _ 0.9631 0.9631 0.9631 0.9631
119
- 117 09:04:35 0 0.0250 0.1456362626140971 _ _ _ _ _ _ _ _ _ _ 0.9631 0.9631 0.9631 0.9631
120
- 118 09:28:00 1 0.0250 0.1439011391959644 _ _ _ _ _ _ _ _ _ _ 0.9631 0.9631 0.9631 0.9631
121
- 119 09:51:25 0 0.0250 0.14387666936879415 _ _ _ _ _ _ _ _ _ _ 0.9632 0.9632 0.9632 0.9632
122
- 120 10:14:51 0 0.0250 0.14368277304316643 _ _ _ _ _ _ _ _ _ _ 0.9633 0.9633 0.9633 0.9633
123
- 121 10:38:15 0 0.0250 0.14401180188408505 _ _ _ _ _ _ _ _ _ _ 0.9632 0.9632 0.9632 0.9632
124
- 122 11:01:45 1 0.0250 0.14190384826544228 _ _ _ _ _ _ _ _ _ _ 0.9632 0.9632 0.9632 0.9632
125
- 123 11:25:31 0 0.0250 0.14156404113846752 _ _ _ _ _ _ _ _ _ _ 0.9633 0.9633 0.9633 0.9633
126
- 124 11:49:02 0 0.0250 0.14334506448280024 _ _ _ _ _ _ _ _ _ _ 0.9635 0.9635 0.9635 0.9635
127
- 125 12:12:31 1 0.0250 0.1419388082834431 _ _ _ _ _ _ _ _ _ _ 0.9634 0.9634 0.9634 0.9634
128
- 126 12:36:00 2 0.0250 0.14170677811496898 _ _ _ _ _ _ _ _ _ _ 0.9636 0.9636 0.9636 0.9636
129
- 127 12:59:27 0 0.0125 0.13874942668664622 _ _ _ _ _ _ _ _ _ _ 0.9638 0.9638 0.9638 0.9638
130
- 128 13:22:56 0 0.0125 0.13761071341297706 _ _ _ _ _ _ _ _ _ _ 0.9639 0.9639 0.9639 0.9639
131
- 129 13:46:24 0 0.0125 0.13801613958699138 _ _ _ _ _ _ _ _ _ _ 0.9639 0.9639 0.9639 0.9639
132
- 130 14:10:12 1 0.0125 0.13691942280057715 _ _ _ _ _ _ _ _ _ _ 0.964 0.964 0.964 0.964
133
- 131 14:33:48 0 0.0125 0.13759175252124392 _ _ _ _ _ _ _ _ _ _ 0.964 0.964 0.964 0.964
134
- 132 14:57:26 1 0.0125 0.13605770421426944 _ _ _ _ _ _ _ _ _ _ 0.964 0.964 0.964 0.964
135
- 133 15:20:56 0 0.0125 0.13757905333765666 _ _ _ _ _ _ _ _ _ _ 0.9641 0.9641 0.9641 0.9641
136
- 134 15:44:27 1 0.0125 0.13585668101601625 _ _ _ _ _ _ _ _ _ _ 0.964 0.964 0.964 0.964
137
- 135 16:07:57 0 0.0125 0.1359525140283796 _ _ _ _ _ _ _ _ _ _ 0.9641 0.9641 0.9641 0.9641
138
- 136 16:31:41 1 0.0125 0.1353510881129821 _ _ _ _ _ _ _ _ _ _ 0.9642 0.9642 0.9642 0.9642
139
- 137 16:55:09 0 0.0125 0.13588478053671538 _ _ _ _ _ _ _ _ _ _ 0.9641 0.9641 0.9641 0.9641
140
- 138 17:18:45 1 0.0125 0.13547475301437173 _ _ _ _ _ _ _ _ _ _ 0.9642 0.9642 0.9642 0.9642
141
- 139 17:42:22 2 0.0125 0.13502782606054411 _ _ _ _ _ _ _ _ _ _ 0.9642 0.9642 0.9642 0.9642
142
- 140 18:05:53 0 0.0125 0.13481195497481782 _ _ _ _ _ _ _ _ _ _ 0.9641 0.9641 0.9641 0.9641
143
- 141 18:29:30 0 0.0125 0.13416481617924972 _ _ _ _ _ _ _ _ _ _ 0.9645 0.9645 0.9645 0.9645
144
- 142 18:53:03 0 0.0125 0.13502357041225113 _ _ _ _ _ _ _ _ _ _ 0.9643 0.9643 0.9643 0.9643
145
- 143 19:16:51 1 0.0125 0.1348685677112196 _ _ _ _ _ _ _ _ _ _ 0.9643 0.9643 0.9643 0.9643
146
- 144 19:40:23 2 0.0125 0.13317074967193576 _ _ _ _ _ _ _ _ _ _ 0.9645 0.9645 0.9645 0.9645
147
- 145 20:03:53 0 0.0125 0.13302220075108664 _ _ _ _ _ _ _ _ _ _ 0.9644 0.9644 0.9644 0.9644
148
- 146 20:27:21 0 0.0125 0.13223227358080888 _ _ _ _ _ _ _ _ _ _ 0.9644 0.9644 0.9644 0.9644
149
- 147 20:50:55 0 0.0125 0.13367648299557353 _ _ _ _ _ _ _ _ _ _ 0.9644 0.9644 0.9644 0.9644
150
- 148 21:14:30 1 0.0125 0.13366286128920055 _ _ _ _ _ _ _ _ _ _ 0.9644 0.9644 0.9644 0.9644
151
- 149 21:38:15 2 0.0125 0.13307078396670677 _ _ _ _ _ _ _ _ _ _ 0.9641 0.9641 0.9641 0.9641
 
1
+ EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS
2
+ 1 00:11:58 0.1000 0.4237
3
+ 2 00:36:04 0.1000 0.3138
4
+ 3 01:00:09 0.1000 0.2869
5
+ 4 01:24:15 0.1000 0.2718
6
+ 5 01:48:19 0.1000 0.2614
7
+ 6 02:12:23 0.1000 0.2538
8
+ 7 02:36:31 0.1000 0.2477
9
+ 8 03:00:37 0.1000 0.2433
10
+ 9 03:24:44 0.1000 0.2389
11
+ 10 03:48:50 0.1000 0.2355
12
+ 11 04:12:56 0.1000 0.2322
13
+ 12 04:37:02 0.1000 0.2295
14
+ 13 05:01:09 0.1000 0.2276
15
+ 14 05:25:13 0.1000 0.2256
16
+ 15 05:49:17 0.1000 0.2236
17
+ 16 06:13:25 0.1000 0.2215
18
+ 17 06:37:30 0.1000 0.2203
19
+ 18 07:01:38 0.1000 0.2190
20
+ 19 07:25:43 0.1000 0.2176
21
+ 20 07:49:49 0.1000 0.2165
22
+ 21 08:13:57 0.1000 0.2152
23
+ 22 08:38:03 0.1000 0.2142
24
+ 23 09:02:11 0.1000 0.2128
25
+ 24 09:26:16 0.1000 0.2114
26
+ 25 09:50:23 0.1000 0.2116
27
+ 26 10:14:28 0.1000 0.2099
28
+ 27 10:38:33 0.1000 0.2099
29
+ 28 11:02:37 0.1000 0.2089
30
+ 29 11:26:44 0.1000 0.2082
31
+ 30 11:50:52 0.1000 0.2078
32
+ 31 12:14:56 0.1000 0.2071
33
+ 32 12:39:00 0.1000 0.2064
34
+ 33 13:03:07 0.1000 0.2053
35
+ 34 13:27:14 0.1000 0.2052
36
+ 35 13:51:21 0.1000 0.2043
37
+ 36 14:15:27 0.1000 0.2042
38
+ 37 14:39:31 0.1000 0.2037
39
+ 38 15:03:36 0.1000 0.2032
40
+ 39 15:27:41 0.1000 0.2025
41
+ 40 15:51:47 0.1000 0.2023
42
+ 41 16:15:52 0.1000 0.2017
43
+ 42 16:39:56 0.1000 0.2015
44
+ 43 17:04:01 0.1000 0.2011
45
+ 44 17:28:07 0.1000 0.2007
46
+ 45 17:52:13 0.1000 0.2002
47
+ 46 18:16:20 0.1000 0.1999
48
+ 47 18:40:25 0.1000 0.1996
49
+ 48 19:04:30 0.1000 0.1996
50
+ 49 19:28:33 0.1000 0.1986
51
+ 50 19:52:39 0.1000 0.1994
52
+ 51 20:16:47 0.1000 0.1985
53
+ 52 20:40:52 0.1000 0.1980
54
+ 53 21:05:00 0.1000 0.1977
55
+ 54 21:29:04 0.1000 0.1980
56
+ 55 21:53:10 0.1000 0.1971
57
+ 56 22:17:14 0.1000 0.1971
58
+ 57 22:41:19 0.1000 0.1971
59
+ 58 23:05:25 0.1000 0.1967
60
+ 59 23:29:26 0.1000 0.1963
61
+ 60 23:53:31 0.1000 0.1962
62
+ 61 00:17:34 0.1000 0.1958
63
+ 62 00:41:38 0.1000 0.1956
64
+ 63 01:05:45 0.1000 0.1958
65
+ 64 01:29:52 0.1000 0.1951
66
+ 65 01:54:01 0.1000 0.1949
67
+ 66 02:18:05 0.1000 0.1948
68
+ 67 02:42:11 0.1000 0.1946
69
+ 68 03:06:20 0.1000 0.1947
70
+ 69 03:30:26 0.1000 0.1947
71
+ 70 03:54:29 0.1000 0.1944
72
+ 71 04:18:35 0.1000 0.1941
73
+ 72 04:42:43 0.1000 0.1940
74
+ 73 05:06:48 0.1000 0.1935
75
+ 74 05:30:53 0.1000 0.1938
76
+ 75 05:54:57 0.1000 0.1939
77
+ 76 06:19:06 0.1000 0.1930
78
+ 77 06:43:09 0.1000 0.1930
79
+ 78 07:07:16 0.1000 0.1931
80
+ 79 07:31:22 0.1000 0.1930
81
+ 80 07:55:27 0.1000 0.1926
82
+ 81 08:19:29 0.1000 0.1929
83
+ 82 08:43:34 0.1000 0.1921
84
+ 83 09:07:40 0.1000 0.1925
85
+ 84 09:31:42 0.1000 0.1928
86
+ 85 09:55:48 0.1000 0.1925
87
+ 86 10:19:54 0.1000 0.1920
88
+ 87 10:43:58 0.1000 0.1922
89
+ 88 11:08:01 0.1000 0.1920
90
+ 89 11:32:09 0.1000 0.1916
91
+ 90 11:56:13 0.1000 0.1915
92
+ 91 12:20:17 0.1000 0.1916
93
+ 92 12:44:24 0.1000 0.1916
94
+ 93 13:08:31 0.1000 0.1917
95
+ 94 13:32:34 0.1000 0.1918
96
+ 95 13:56:40 0.0500 0.1802
97
+ 96 14:20:45 0.0500 0.1768
98
+ 97 14:44:51 0.0500 0.1755
99
+ 98 15:08:58 0.0500 0.1735
100
+ 99 15:33:05 0.0500 0.1730
101
+ 100 15:57:10 0.0500 0.1726
102
+ 101 16:21:15 0.0500 0.1714
103
+ 102 16:45:23 0.0500 0.1711
104
+ 103 17:09:31 0.0500 0.1704
105
+ 104 17:33:39 0.0500 0.1702
106
+ 105 17:57:44 0.0500 0.1703
107
+ 106 18:21:47 0.0500 0.1691
108
+ 107 18:45:51 0.0500 0.1694
109
+ 108 19:09:55 0.0500 0.1687
110
+ 109 19:34:01 0.0500 0.1686
111
+ 110 19:58:07 0.0500 0.1682
112
+ 111 20:22:12 0.0500 0.1681
113
+ 112 20:46:19 0.0500 0.1673
114
+ 113 21:10:26 0.0500 0.1671
115
+ 114 21:34:32 0.0500 0.1668
116
+ 115 21:58:40 0.0500 0.1665
117
+ 116 22:22:46 0.0500 0.1667
118
+ 117 22:46:55 0.0500 0.1662
119
+ 118 23:11:00 0.0500 0.1658
120
+ 119 23:35:04 0.0500 0.1660
121
+ 120 23:59:12 0.0500 0.1657
122
+ 121 00:23:14 0.0500 0.1659
123
+ 122 00:47:20 0.0500 0.1654
124
+ 123 01:11:23 0.0500 0.1652
125
+ 124 01:35:31 0.0500 0.1650
126
+ 125 01:59:40 0.0500 0.1647
127
+ 126 02:23:48 0.0500 0.1646
128
+ 127 02:47:53 0.0500 0.1641
129
+ 128 03:11:58 0.0500 0.1641
130
+ 129 03:36:06 0.0500 0.1642
131
+ 130 04:00:12 0.0500 0.1637
132
+ 131 04:24:17 0.0500 0.1637
133
+ 132 04:48:23 0.0500 0.1632
134
+ 133 05:12:29 0.0500 0.1633
135
+ 134 05:36:36 0.0500 0.1629
136
+ 135 06:00:40 0.0500 0.1629
137
+ 136 06:24:46 0.0500 0.1626
138
+ 137 06:48:53 0.0500 0.1626
139
+ 138 07:12:58 0.0500 0.1625
140
+ 139 07:37:01 0.0500 0.1617
141
+ 140 08:01:07 0.0500 0.1620
142
+ 141 08:25:13 0.0500 0.1619
143
+ 142 08:49:18 0.0500 0.1617
144
+ 143 09:13:22 0.0500 0.1616
145
+ 144 09:37:28 0.0500 0.1613
146
+ 145 10:01:34 0.0500 0.1606
147
+ 146 10:25:40 0.0500 0.1612
148
+ 147 10:49:46 0.0500 0.1611
149
+ 148 11:13:52 0.0500 0.1608
150
+ 149 11:37:56 0.0500 0.1607
151
+ 150 12:02:00 0.0250 0.1558
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3402226c5babc6cd0b34fc0a16d05528603634255fec03d455621f6898a9433c
3
- size 314055714
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a01ffffa385dabfebe791703cf37f82b5b4811de243a46967d907544112bb28e
3
+ size 253762544
training.log CHANGED
The diff for this file is too large to render. See raw diff