File size: 6,611 Bytes
924daa7 dcbff95 924daa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../notebooks/12_modelling.ipynb.
# %% auto 0
__all__ = ['VTDEConfig', 'VTDEModel']
# %% ../notebooks/12_modelling.ipynb 1
from transformers.models.clip.modeling_clip import CLIPOutput, clip_loss
from typing import Optional, Tuple, Union
from transformers import VisionTextDualEncoderConfig, AutoModel, PreTrainedModel, VisionTextDualEncoderModel
import torch
class VTDEConfig(VisionTextDualEncoderConfig):
model_type = "vtde"
def __init__(self, projection_dim=512, logit_scale_init_value=2.6592,
text_pooling_mode='mean',
vision_pooling_mode='max',
**kwargs):
"""
pooling_mode in ['mean', 'max', 'cls']
https://arxiv.org/pdf/2210.09996.pdf
https://github.com/kahnchana/clippy/blob/3c102c29c32f7c66c6e52e09b795fe9c061bbb03/src/open_clip/hf_model.py#L56
"""
self.text_pooling_mode = text_pooling_mode
self.vision_pooling_mode = vision_pooling_mode
super().__init__(projection_dim, logit_scale_init_value, **kwargs)
class VTDEModel(VisionTextDualEncoderModel):
config_class = VTDEConfig
base_model_prefix = "vtde"
def __init__(
self,
config: Optional[VTDEConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
# You can customize the constructor if needed
super().__init__(config, vision_model, text_model)
self.text_pooling_mode = config.text_pooling_mode
self.vision_pooling_mode = config.vision_pooling_mode
def get_text_features(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.text_pooling_mode == 'cls':
pooled_output = text_outputs[1]
elif self.text_pooling_mode == 'mean':
pooled_output = torch.mean(text_outputs[0], dim=1)
elif self.text_pooling_mode == 'max':
pooled_output = torch.max(text_outputs[0], dim=1)[0]
elif self.text_pooling_mode == 'norm':
"""we select the patch with the largest norm"""
last_hidden_states = text_outputs[0]
patch_norms = torch.norm(last_hidden_states[:, 1:, :], dim=-1)
max_norm_idx = torch.argmax(patch_norms, dim=1)
pooled_output = last_hidden_states[:, max_norm_idx, :][:, 0, :]
else:
"We want to raise the name of the pooling mode"
raise NotImplementedError
text_features = self.text_projection(pooled_output)
return text_features
def get_image_features(
self,
pixel_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.vision_pooling_mode == 'cls':
pooled_output = vision_outputs[1]
elif self.vision_pooling_mode == 'mean':
pooled_output = torch.mean(vision_outputs[0], dim=1)
elif self.vision_pooling_mode == 'max':
pooled_output = torch.max(vision_outputs[0], dim=1)[0]
elif self.vision_pooling_mode == 'norm':
"""we select the patch with the largest norm"""
last_hidden_states = vision_outputs[0]
patch_norms = torch.norm(last_hidden_states[:, 1:, :], dim=-1)
max_norm_idx = torch.argmax(patch_norms, dim=1)
pooled_output = last_hidden_states[:, max_norm_idx, :][:, 0, :]
else:
raise NotImplementedError
image_features = self.visual_projection(pooled_output)
return image_features
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
token_type_ids: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CLIPOutput]:
return_dict = return_dict if return_dict is not None else self.config.return_dict
image_embeds = self.get_image_features(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = self.get_text_features(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# normalized features
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.T
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_embeds, image_embeds)
return ((loss,) + output) if loss is not None else output
return CLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_embeds,
vision_model_output=image_embeds,
)
VTDEConfig.register_for_auto_class()
VTDEModel.register_for_auto_class("AutoModel")
|