File size: 1,216 Bytes
f066ef4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
[tokenizer](#tokenizer) | [model](#model) | [datasets](#datasets) | [plots](#plots) | [fine tuning](#fine-tuning)
# Tokenizer {#tokenizer}
We trained our tokenizer using [sentencepiece](https://github.com/google/sentencepiece)'s unigram tokenizer. Then loaded the tokenizer as MT5TokenizerFast.
## Model {#model}
We used [MT5-base](https://huggingface.co/google/mt5-base) model.
## Datasets {#datasets}
We used [Code Search Net](https://huggingface.co/datasets/code_search_net)'s dataset and some scrapped data from internet to train the model. We maintained a list of datasets where each dataset had codes of same language.
## Plots {#plots}
[train loss](#train_loss) | [evaluation loss](#eval_loss) | [evaluation accuracy](#eval_acc) | [learning rate](#lrs)
### Train loss {#train_loss}
![train loss](train_loss.png)
### Evaluation loss {#eval_loss}
![eval loss](eval_loss.png)
### Evaluation accuracy {#eval_acc}
![eval accuracy](eval_accuracy.png)
### Learning rate {#lrs}
![learning rate](learning_rate.png)
## Fine tuning {#fine-tuning}
We fine tuned the model with [CodeXGLUE code-to-code-trans dataset](https://huggingface.co/datasets/code_x_glue_cc_code_to_code_trans), and scrapper data.
|