|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path = "code-mt5.log" |
|
losses = [] |
|
steps = [] |
|
eval_steps = [] |
|
eval_losses = [] |
|
eval_accs = [] |
|
learning_rate = [] |
|
with open(path, "r") as filePtr: |
|
for line in filePtr: |
|
|
|
toks = line.split() |
|
if toks[0] == "Step...": |
|
if "Learning" in toks: |
|
losses.append(float(toks[4].split(",")[0])) |
|
steps.append(int(toks[1].split("(")[1])) |
|
learning_rate.append(float(toks[-1].split(")")[0])) |
|
if "Acc:" in toks: |
|
eval_steps.append(int(toks[1].split("(")[1])) |
|
eval_losses.append(float(toks[4].split(",")[0])) |
|
eval_accs.append(float(toks[-1].split(")")[0])) |
|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Steps done: ", len(losses) * 100) |
|
|
|
|
|
|
|
print("last 30 losses: ", losses[-30:]) |
|
|
|
|
|
|
|
plt.plot(steps, losses) |
|
plt.show() |
|
|
|
|
|
|
|
min_loss, at_step = 1e10, None |
|
for step, loss in zip(steps, losses): |
|
if loss < min_loss: |
|
min_loss = loss |
|
at_step = step |
|
|
|
print("min loss: {} at step {}".format(min_loss, at_step)) |
|
|
|
|
|
|
|
print(eval_losses) |
|
|
|
|
|
|
|
plt.plot(eval_steps, eval_losses) |
|
plt.show() |
|
|
|
|
|
|
|
print(eval_accs) |
|
|
|
|
|
|
|
plt.plot(eval_steps, eval_accs) |
|
plt.show() |
|
|
|
|
|
|
|
plt.plot(steps, learning_rate) |
|
plt.show() |
|
|
|
|
|
|
|
|