metadata
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
instance_prompt: NEO1X
widget:
- text: a photo of the NEO1X robot
output:
url: images/example_0q487s1a2.png
- text: a photo of the NEO1X robot at a night club partying
output:
url: images/example_5z339jeg4.png
Flux Neo 1X
Run on Replicate:
https://replicate.com/fofr/flux-neo-1x
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
Trigger words
You should use NEO1X
to trigger the image generation.
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('fofr/flux-neo-1x', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers