francisco-perez-sorrosal's picture
update model card README.md
fbc98bb
metadata
tags:
  - generated_from_trainer
datasets:
  - dataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: >-
      dccuchile-distilbert-base-spanish-uncased-finetuned-with-spanish-tweets-clf-cleaned-ds
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: dataset
          type: dataset
          config: 60-20-20
          split: dev
          args: 60-20-20
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.650310988251555
          - name: F1
            type: f1
            value: 0.6518765643027159
          - name: Precision
            type: precision
            value: 0.6625453481119005
          - name: Recall
            type: recall
            value: 0.6498098682990169

dccuchile-distilbert-base-spanish-uncased-finetuned-with-spanish-tweets-clf-cleaned-ds

This model is a fine-tuned version of dccuchile/distilbert-base-spanish-uncased on the dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6605
  • Accuracy: 0.6503
  • F1: 0.6519
  • Precision: 0.6625
  • Recall: 0.6498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8558 1.0 543 0.7705 0.6628 0.6408 0.6585 0.6404
0.5485 2.0 1086 0.8657 0.6593 0.6436 0.6578 0.6388
0.3071 3.0 1629 1.3021 0.6586 0.6556 0.6551 0.6581
0.1581 4.0 2172 1.6605 0.6503 0.6519 0.6625 0.6498

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2