librarian-bot's picture
Librarian Bot: Add base_model information to model
a5778b2
|
raw
history blame
2.42 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - dataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model: distilbert-base-uncased
model-index:
  - name: distilbert-base-uncased-finetuned-with-spanish-tweets-clf-cleaned-ds
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: dataset
          type: dataset
          config: 60-20-20
          split: dev
          args: 60-20-20
        metrics:
          - type: accuracy
            value: 0.5556323427781618
            name: Accuracy
          - type: f1
            value: 0.5577964748279268
            name: F1
          - type: precision
            value: 0.5682169161320979
            name: Precision
          - type: recall
            value: 0.5539741666889855
            name: Recall

distilbert-base-uncased-finetuned-with-spanish-tweets-clf-cleaned-ds

This model is a fine-tuned version of distilbert-base-uncased on the dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1229
  • Accuracy: 0.5556
  • F1: 0.5578
  • Precision: 0.5682
  • Recall: 0.5540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0683 1.0 543 1.0019 0.4997 0.4041 0.4724 0.4488
0.9372 2.0 1086 0.9395 0.5425 0.5143 0.5480 0.5123
0.7283 3.0 1629 0.9674 0.5632 0.5615 0.5658 0.5587
0.5127 4.0 2172 1.1229 0.5556 0.5578 0.5682 0.5540

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2