|
--- |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-classification |
|
widget: |
|
structuredData: |
|
attribute_0: |
|
- material_7 |
|
- material_7 |
|
- material_7 |
|
attribute_1: |
|
- material_8 |
|
- material_8 |
|
- material_6 |
|
attribute_2: |
|
- 5 |
|
- 5 |
|
- 6 |
|
attribute_3: |
|
- 8 |
|
- 8 |
|
- 9 |
|
loading: |
|
- 154.02 |
|
- 108.73 |
|
- 99.84 |
|
measurement_0: |
|
- 14 |
|
- 4 |
|
- 6 |
|
measurement_1: |
|
- 6 |
|
- 7 |
|
- 7 |
|
measurement_10: |
|
- 16.637 |
|
- 16.207 |
|
- 17.17 |
|
measurement_11: |
|
- 20.719 |
|
- 20.058 |
|
- 20.858 |
|
measurement_12: |
|
- 12.824 |
|
- 11.898 |
|
- 10.968 |
|
measurement_13: |
|
- 16.067 |
|
- 13.871 |
|
- 16.448 |
|
measurement_14: |
|
- 15.181 |
|
- 14.266 |
|
- 15.6 |
|
measurement_15: |
|
- 18.546 |
|
- 15.734 |
|
- 14.637 |
|
measurement_16: |
|
- 19.402 |
|
- 16.886 |
|
- 13.86 |
|
measurement_17: |
|
- 643.086 |
|
- 642.533 |
|
- 673.545 |
|
measurement_2: |
|
- 6 |
|
- 9 |
|
- 6 |
|
measurement_3: |
|
- 19.532 |
|
- 18.128 |
|
- NaN |
|
measurement_4: |
|
- 11.017 |
|
- 11.866 |
|
- 10.064 |
|
measurement_5: |
|
- 15.639 |
|
- 17.891 |
|
- 16.287 |
|
measurement_6: |
|
- 16.709 |
|
- 20.302 |
|
- 17.445 |
|
measurement_7: |
|
- 10.057 |
|
- NaN |
|
- 12.117 |
|
measurement_8: |
|
- 20.201 |
|
- 18.148 |
|
- 20.659 |
|
measurement_9: |
|
- 11.106 |
|
- 10.221 |
|
- 11.999 |
|
product_code: |
|
- C |
|
- C |
|
- E |
|
--- |
|
|
|
# Model description |
|
|
|
This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset. |
|
|
|
## Intended uses & limitations |
|
|
|
This model is not ready to be used in production. |
|
|
|
## Training Procedure |
|
|
|
### Hyperparameters |
|
|
|
The model is trained with below hyperparameters. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| memory | | |
|
| steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', |
|
SimpleImputer(), ['loading']), |
|
('numerical_missing_value_imputer', |
|
SimpleImputer(), |
|
['loading', 'measurement_3', 'measurement_4', |
|
'measurement_5', 'measurement_6', |
|
'measurement_7', 'measurement_8', |
|
'measurement_9', 'measurement_10', |
|
'measurement_11', 'measurement_12', |
|
'measurement_13', 'measurement_14', |
|
'measurement_15', 'measurement_16', |
|
'measurement_17']), |
|
('attribute_0_encoder', OneHotEncoder(), |
|
['attribute_0']), |
|
('attribute_1_encoder', OneHotEncoder(), |
|
['attribute_1']), |
|
('product_code_encoder', OneHotEncoder(), |
|
['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] | |
|
| verbose | False | |
|
| transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer', |
|
SimpleImputer(), ['loading']), |
|
('numerical_missing_value_imputer', |
|
SimpleImputer(), |
|
['loading', 'measurement_3', 'measurement_4', |
|
'measurement_5', 'measurement_6', |
|
'measurement_7', 'measurement_8', |
|
'measurement_9', 'measurement_10', |
|
'measurement_11', 'measurement_12', |
|
'measurement_13', 'measurement_14', |
|
'measurement_15', 'measurement_16', |
|
'measurement_17']), |
|
('attribute_0_encoder', OneHotEncoder(), |
|
['attribute_0']), |
|
('attribute_1_encoder', OneHotEncoder(), |
|
['attribute_1']), |
|
('product_code_encoder', OneHotEncoder(), |
|
['product_code'])]) | |
|
| model | DecisionTreeClassifier(max_depth=4) | |
|
| transformation__n_jobs | | |
|
| transformation__remainder | drop | |
|
| transformation__sparse_threshold | 0.3 | |
|
| transformation__transformer_weights | | |
|
| transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] | |
|
| transformation__verbose | False | |
|
| transformation__verbose_feature_names_out | True | |
|
| transformation__loading_missing_value_imputer | SimpleImputer() | |
|
| transformation__numerical_missing_value_imputer | SimpleImputer() | |
|
| transformation__attribute_0_encoder | OneHotEncoder() | |
|
| transformation__attribute_1_encoder | OneHotEncoder() | |
|
| transformation__product_code_encoder | OneHotEncoder() | |
|
| transformation__loading_missing_value_imputer__add_indicator | False | |
|
| transformation__loading_missing_value_imputer__copy | True | |
|
| transformation__loading_missing_value_imputer__fill_value | | |
|
| transformation__loading_missing_value_imputer__missing_values | nan | |
|
| transformation__loading_missing_value_imputer__strategy | mean | |
|
| transformation__loading_missing_value_imputer__verbose | 0 | |
|
| transformation__numerical_missing_value_imputer__add_indicator | False | |
|
| transformation__numerical_missing_value_imputer__copy | True | |
|
| transformation__numerical_missing_value_imputer__fill_value | | |
|
| transformation__numerical_missing_value_imputer__missing_values | nan | |
|
| transformation__numerical_missing_value_imputer__strategy | mean | |
|
| transformation__numerical_missing_value_imputer__verbose | 0 | |
|
| transformation__attribute_0_encoder__categories | auto | |
|
| transformation__attribute_0_encoder__drop | | |
|
| transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> | |
|
| transformation__attribute_0_encoder__handle_unknown | error | |
|
| transformation__attribute_0_encoder__sparse | True | |
|
| transformation__attribute_1_encoder__categories | auto | |
|
| transformation__attribute_1_encoder__drop | | |
|
| transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> | |
|
| transformation__attribute_1_encoder__handle_unknown | error | |
|
| transformation__attribute_1_encoder__sparse | True | |
|
| transformation__product_code_encoder__categories | auto | |
|
| transformation__product_code_encoder__drop | | |
|
| transformation__product_code_encoder__dtype | <class 'numpy.float64'> | |
|
| transformation__product_code_encoder__handle_unknown | error | |
|
| transformation__product_code_encoder__sparse | True | |
|
| model__ccp_alpha | 0.0 | |
|
| model__class_weight | | |
|
| model__criterion | gini | |
|
| model__max_depth | 4 | |
|
| model__max_features | | |
|
| model__max_leaf_nodes | | |
|
| model__min_impurity_decrease | 0.0 | |
|
| model__min_samples_leaf | 1 | |
|
| model__min_samples_split | 2 | |
|
| model__min_weight_fraction_leaf | 0.0 | |
|
| model__random_state | | |
|
| model__splitter | best | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
The model plot is below. |
|
|
|
<style>#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f {color: black;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f pre{padding: 0;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable {background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator:hover {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-item {z-index: 1;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:only-child::after {width: 0;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-text-repr-fallback {display: none;}</style><div id="sk-b8914d13-cacb-404b-89fd-48f0ed8d671f" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="fe201304-214c-493b-8896-11cea0894f6e" type="checkbox" ><label for="fe201304-214c-493b-8896-11cea0894f6e" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="19136b49-925c-40a2-b4d1-37039bb014a9" type="checkbox" ><label for="19136b49-925c-40a2-b4d1-37039bb014a9" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c8ec7f92-b10a-41e7-b673-1239572ea00e" type="checkbox" ><label for="c8ec7f92-b10a-41e7-b673-1239572ea00e" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="70fec50e-9c49-4818-a58f-ef8de932035c" type="checkbox" ><label for="70fec50e-9c49-4818-a58f-ef8de932035c" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ac8a6641-4222-4b12-b691-928201d9af73" type="checkbox" ><label for="ac8a6641-4222-4b12-b691-928201d9af73" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="a14b63c1-fecb-445e-9a74-8229a531f0ea" type="checkbox" ><label for="a14b63c1-fecb-445e-9a74-8229a531f0ea" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="80227cfc-e001-4c0d-b495-e4e0631a49d5" type="checkbox" ><label for="80227cfc-e001-4c0d-b495-e4e0631a49d5" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>['attribute_0']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c52efc0c-08b7-467a-a0a1-f07cb6cecebc" type="checkbox" ><label for="c52efc0c-08b7-467a-a0a1-f07cb6cecebc" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6da0ab07-3d41-459c-a8a6-a56960b775f2" type="checkbox" ><label for="6da0ab07-3d41-459c-a8a6-a56960b775f2" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>['attribute_1']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b515fbe5-466a-4eb7-84d9-35227a1e862a" type="checkbox" ><label for="b515fbe5-466a-4eb7-84d9-35227a1e862a" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="72c4b8e6-3110-486f-8b33-a7db1f5e822f" type="checkbox" ><label for="72c4b8e6-3110-486f-8b33-a7db1f5e822f" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>['product_code']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f3bfb5a1-317d-4ff4-8dd0-804ef1d7fd61" type="checkbox" ><label for="f3bfb5a1-317d-4ff4-8dd0-804ef1d7fd61" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="dbcb65f9-3068-4263-9c1c-2e6413804681" type="checkbox" ><label for="dbcb65f9-3068-4263-9c1c-2e6413804681" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
You can find the details about evaluation process and the evaluation results. |
|
|
|
|
|
|
|
| Metric | Value | |
|
|----------|---------| |
|
| accuracy | 0.7888 | |
|
| f1 score | 0.7888 | |
|
|
|
# How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
import pickle |
|
with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file: |
|
clf = pickle.load(file) |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
|
|
# Model Card Authors |
|
|
|
This model card is written by following authors: |
|
|
|
huggingface |
|
|
|
# Model Card Contact |
|
|
|
You can contact the model card authors through following channels: |
|
[More Information Needed] |
|
|
|
# Citation |
|
|
|
Below you can find information related to citation. |
|
|
|
**BibTeX:** |
|
``` |
|
[More Information Needed] |
|
``` |
|
|
|
|
|
Tree Plot |
|
![Tree Plot](tree.png) |
|
|
|
|
|
|
|
Confusion Matrix |
|
![Confusion Matrix](confusion_matrix.png) |
|
|