dummy-kosts

한국어 기사 헤드라인을 입력하면 7가지 주제 중 하나로 분류해 주는 모형입니다.

This model takes Korean article headlines as input and classifies them into one of seven topics.

This model is a fine-tuned version of klue/bert-base on klue/ynat. It achieves the following results on the evaluation set:

  • Loss: 0.6433
  • Accuracy: 0.8642

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4139 1.0 5710 0.4763 0.8528
0.3358 2.0 11420 0.5527 0.8650
0.2045 3.0 17130 0.6433 0.8642

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
16
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for freud-sensei/headline_classification

Base model

klue/bert-base
Finetuned
(68)
this model

Space using freud-sensei/headline_classification 1