File size: 14,669 Bytes
2a7e546
d751051
88deab4
2a7e546
d751051
 
054faf7
d751051
 
 
 
 
aa6b13c
2a7e546
 
aa6b13c
2a7e546
d751051
 
 
 
 
 
 
a4c8091
054faf7
 
4f25fc2
 
6fa0b52
 
054faf7
aa6b13c
 
 
054faf7
42f8b67
a150f0f
6fa0b52
2a7e546
d751051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88deab4
 
d751051
054faf7
 
d751051
054faf7
d751051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054faf7
88deab4
054faf7
42f8b67
aa6b13c
9bde8da
 
d751051
9bde8da
42f8b67
d751051
42f8b67
054faf7
6fa0b52
 
 
 
 
 
 
 
 
 
 
42f8b67
6fa0b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bde8da
 
 
 
 
054faf7
6fa0b52
 
054faf7
6fa0b52
42f8b67
054faf7
 
 
42f8b67
d751051
 
 
 
aa6b13c
d751051
 
88deab4
 
42f8b67
88deab4
42f8b67
 
88deab4
aa6b13c
 
 
 
 
d751051
 
aa6b13c
d751051
 
42f8b67
 
 
9bde8da
054faf7
3ab0859
 
aa6b13c
 
 
d751051
 
9bde8da
d751051
 
42f8b67
 
d751051
 
aa6b13c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from diffusers import DiffusionPipeline
from diffusers import DDPMPipeline
from diffusers import DDPMScheduler, UNet2DConditionModel
import torch
import torchvision.transforms as T
from PIL import Image
import PIL.Image
from transformers import AutoTokenizer
from datasets import load_dataset
import numpy as np
import pandas as pd
from tqdm.auto import tqdm
from diffusers.image_processor import VaeImageProcessor

class RCTDiffusionPipeline(DiffusionPipeline):
    def __init__(self, unet, scheduler, vae, text_tokenizer, text_encoder, vae_image_processor : VaeImageProcessor, latent_size=32, sample_size=256):
        super().__init__()

        # dictionnary that keeps the different classes of object description, color1, color2 and color3
        self.object_description_dict = {}
        self.color1_dict = {}
        self.color2_dict = {}
        self.color3_dict = {}

        self.scheduler = scheduler
        self.unet = unet
        self.vae = vae
        self.latent_size = latent_size
        self.sample_size = sample_size
        self.text_encoder = text_encoder
        self.text_tokenizer = text_tokenizer

        # use vae image processor
        self.vae_image_processor = vae_image_processor

        # channels for 1 image
        self.num_channels = int(self.unet.config.in_channels)
        self.load_dictionaries_from_dataset()
        self.register_modules(unet=unet, scheduler=scheduler, vae=vae, text_tokenizer=text_tokenizer, text_encoder=text_encoder)
    
    def load_dictionaries_from_dataset(self):
        dataset = load_dataset('frutiemax/rct_dataset')
        dataset = dataset['train']

        for row in dataset:
            if not row['object_description'] in self.object_description_dict:
                self.object_description_dict[row['object_description']] = len(self.object_description_dict)
            if not row['color1'] in self.color1_dict and row['color1'] != 'none':
                self.color1_dict[row['color1']] = len(self.color1_dict)
            if not row['color2'] in self.color2_dict and row['color2'] != 'none':
                self.color2_dict[row['color2']] = len(self.color2_dict)
            if not row['color3'] in self.color3_dict and row['color3'] != 'none':
                self.color3_dict[row['color3']] = len(self.color3_dict)
    
    # helper functions to know the classes
    def print_class_tokens_to_csv(self):
        object_descriptions = pd.DataFrame(self.object_description_dict.items())
        object_descriptions.to_csv('object_descriptions_tokens.csv')

        color1 = pd.DataFrame(self.color1_dict.items())
        color1.to_csv('color1_tokens.csv')

        color2 = pd.DataFrame(self.color2_dict.items())
        color2.to_csv('color2_tokens.csv')

        color3 = pd.DataFrame(self.color3_dict.items())
        color3.to_csv('color3_tokens.csv')
    
    # helper functions to build weight tables
    def get_object_description_weights(self, classifiers : list[tuple[str, float]]) -> np.array:
        result = np.zeros(len(self.object_description_dict.items()))

        for classifier in classifiers:
            id, weight = classifier
            if id in self.object_description_dict:
                weight_index = self.object_description_dict[id]
                result[weight_index] = weight
        return result
    
    def get_color1_weights(self, classifiers : list[tuple[str, float]]) -> np.array:
        result = np.zeros(len(self.color1_dict.items()))

        for classifier in classifiers:
            id, weight = classifier
            if id in self.color1_dict:
                weight_index = self.color1_dict[id]
                result[weight_index] = weight
        return result

    def get_color2_weights(self, classifiers : list[tuple[str, float]]) -> np.array:
        result = np.zeros(len(self.color2_dict.items()))

        for classifier in classifiers:
            id, weight = classifier
            if id in self.color2_dict:
                weight_index = self.color2_dict[id]
                result[weight_index] = weight
        return result

    def get_color3_weights(self, classifiers : list[tuple[str, float]]) -> np.array:
        result = np.zeros(len(self.color3_dict.items()))

        for classifier in classifiers:
            id, weight = classifier
            if id in self.color3_dict:
                weight_index = self.color3_dict[id]
                result[weight_index] = weight
        return result
    
    def get_class_labels_size(self):
        return len(self.object_description_dict.items()) + len(self.color1_dict.items()) + len(self.color2_dict.items()) + len(self.color3_dict.items())

    def pack_labels_to_tensor(self, num_images, object_descriptions : np.array, colors1: np.array, colors2 : np.array, colors3 : np.array) -> torch.Tensor:
        num_labels = self.get_class_labels_size()
        class_labels = torch.Tensor(size=(num_images, num_labels))

        for batch_index in range(num_images):
            offset = 0
            class_labels[batch_index, offset:offset + len(self.object_description_dict)] = torch.from_numpy(object_descriptions[batch_index])

            offset += len(self.object_description_dict.items())
            class_labels[batch_index, offset:offset + len(self.color1_dict)] = torch.from_numpy(colors1[batch_index])

            offset += len(self.color1_dict.items())
            class_labels[batch_index, offset:offset + len(self.color2_dict)] = torch.from_numpy(colors2[batch_index])

            offset += len(self.color2_dict.items())
            class_labels[batch_index, offset:offset + len(self.color3_dict)] = torch.from_numpy(colors3[batch_index])
        
        class_labels = torch.reshape(class_labels, (num_images, 1, self.get_class_labels_size()))
        return class_labels
    
    def get_class_labels(self, object_description : list[list[tuple[str, float]]], color1 : list[list[tuple[str, float]]], \
                color2 : list[list[tuple[str, float]]] = None, color3 : list[list[tuple[str, float]]] = None, \
                 batch_size=1):
        # check if the labels are the correct size
        if len(object_description) != batch_size:
            return None
        
        if len(color1) != batch_size:
            return None
        
        if color2 != None and len(color2) != batch_size:
            return None
        
        if color3 != None and len(color3) != batch_size:
            return None
        
        # ok build the labels for each batch
        object_descriptions = []
        colors1 = []
        colors2 = []
        colors3 = []

        for batch_index in range(batch_size):
            obj_desc = self.get_object_description_weights(object_description[batch_index])
            c1 = self.get_color1_weights(color1[batch_index])

            if color2 != None:
                c2 = self.get_color2_weights(color2[batch_index])
            else:
                c2 = self.get_color2_weights([])
            
            if color3 != None:
                c3 = self.get_color3_weights(color3[batch_index])
            else:
                c3 = self.get_color3_weights([])

            object_descriptions.append(obj_desc)
            colors1.append(c1)
            colors2.append(c2)
            colors3.append(c3)

        # now put those weights into a tensor
        return self.pack_labels_to_tensor(batch_size, object_descriptions, colors1, colors2, colors3).to(device='cuda',dtype=torch.float16)

    def generate_noise_batches(self, batch_size):
        noise_batches = torch.Tensor(size=(batch_size, self.num_channels, self.latent_size, self.latent_size)).to(dtype=torch.float16, device='cuda')
        seed = torch.seed()
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        for batch_index in range(batch_size):
            noise = torch.randn((self.num_channels, self.latent_size, self.latent_size)).to(dtype=torch.float16, device='cuda')
            noise_batches[batch_index] = noise

        return torch.reshape(noise_batches, (batch_size, self.num_channels, self.latent_size, self.latent_size)).to(dtype=torch.float16, device='cuda')
    
    def test_generate_embeddings(self, object_description, color1, color2, color3) -> torch.Tensor:
        batch_size = len(object_description)

        embeddings = torch.Tensor(size=(batch_size, 77, 768))
        for batch_index in range(batch_size):
            prompt = f'{object_description[batch_index]},{color1[batch_index]},{color2[batch_index]}, {color3[batch_index]}'
            tokens = self.text_tokenizer(prompt, \
                                                    padding="max_length", max_length=self.text_tokenizer.model_max_length, truncation=True, return_tensors="pt")
            with torch.no_grad():
                embeddings[batch_index] = self.text_encoder(tokens.input_ids.to('cuda'))[0]
                
        return embeddings
    
    def generate_embeddings(self, object_description, color1, color2, color3) -> torch.Tensor:
        batch_size = len(object_description)

        embeddings = torch.Tensor(size=(batch_size, 77, 768 * 4))
        for batch_index in range(batch_size):
            object_description_tokens = self.text_tokenizer(object_description[batch_index], \
                                                    padding="max_length", max_length=self.text_tokenizer.model_max_length, truncation=True, return_tensors="pt")
            color1_tokens = self.text_tokenizer(color1[batch_index], \
                                                    padding="max_length", max_length=self.text_tokenizer.model_max_length, truncation=True, return_tensors="pt")
            color2_tokens = self.text_tokenizer(color2[batch_index], \
                                                    padding="max_length", max_length=self.text_tokenizer.model_max_length, truncation=True, return_tensors="pt")
            color3_tokens = self.text_tokenizer(color3[batch_index], \
                                                    padding="max_length", max_length=self.text_tokenizer.model_max_length, truncation=True, return_tensors="pt")
            with torch.no_grad():
                object_description_embeddings = self.text_encoder(object_description_tokens.input_ids.to('cuda'))[0]
                color1_embeddings = self.text_encoder(color1_tokens.input_ids.to('cuda'))[0]
                color2_embeddings = self.text_encoder(color2_tokens.input_ids.to('cuda'))[0]
                color3_embeddings = self.text_encoder(color3_tokens.input_ids.to('cuda'))[0]

                emb = torch.cat([object_description_embeddings, color1_embeddings, color2_embeddings, color3_embeddings], dim=2)
                embeddings[batch_index] = emb
                
        return embeddings.to(dtype=torch.float16)
    
    def validate_inputs(self, object_description : list[str], color1 : list[str], \
                color2 : list[str], color3 : list[str], batch_size) -> tuple[bool, list[str], list[str], list[str], list[str]]:
        # check if the labels sizes are correct
        if len(object_description) != batch_size:
            return False
        
        if len(color1) != batch_size:
            return False
        
        if color2 == None:
            color2 = ['none'] * batch_size
        elif len(color2) != batch_size:
            return False
        
        if color3 == None:
            color3 = ['none'] * batch_size
        elif len(color3) != batch_size:
            return False
        return True, object_description, color1, color2, color3

    def __call__(self, object_description : list[str], color1 : list[str], \
                color2 : list[str] = None, color3 : list[str] = None, \
                 batch_size=1, num_inference_steps=100, generator=torch.manual_seed(torch.random.seed())):
        
        self.unet.to(device='cuda', dtype=torch.float16)
        self.vae.to(device='cuda', dtype=torch.float16)
        self.text_encoder.to(device='cuda', dtype=torch.float16)
        
        res, object_description, color1, color2, color3 = self.validate_inputs(object_description, color1, color2, color3, batch_size)
        if res == False:
            return None
        embeddings = self.test_generate_embeddings(object_description, color1, color2, color3)
        embeddings = embeddings.to(device='cuda', dtype=torch.float16)

        # set the inference steps
        self.scheduler.set_timesteps(num_inference_steps)
        noise_batches = self.generate_noise_batches(batch_size).to(dtype=torch.float16)

        # now call the model for the n interations
        progress_bar = tqdm(total=num_inference_steps)
        epoch = 0
        test_image = None
        for t in self.scheduler.timesteps:
            progress_bar.set_description(f'Inference step {epoch}')

            for batch_index in range(batch_size):
                noise_batch = self.scheduler.scale_model_input(noise_batches, timestep=t)
                with torch.no_grad():
                    noise_residual = self.unet(noise_batch, t, encoder_hidden_states=embeddings).sample
                previous_noisy_sample = self.scheduler.step(noise_residual, t, noise_batch).prev_sample
                noise_batches[batch_index] = previous_noisy_sample

                # test
                test_image = self.decode_latent(noise_batches[batch_index], self.vae.config.scaling_factor)
                

            progress_bar.update(1)
            epoch = epoch + 1
        test_image.show()

        # reshape the data so we get back 4 RGB images
        noise_batches = torch.reshape(noise_batches, (batch_size, self.num_channels, self.latent_size, self.latent_size))
        noise_batches = noise_batches.to('cuda')
        images = torch.Tensor(size=(batch_size, 3, self.sample_size, self.sample_size)).to('cuda')
        images = noise_batches[:, :3]

        with torch.no_grad():
            image = noise_batches
            result = self.vae.decode(image / self.vae.config.scaling_factor).sample
            image = self.vae_image_processor.denormalize(result)
            images = image

        # convert those tensors to PIL images
        tensor_to_pil = T.ToPILImage()
        output_images = []
        for batch_index in range(batch_size):
            image = images[batch_index]
            output_images.append(image)
        
        # for now just return the images
        return [tensor_to_pil(image) for image in output_images]

    def decode_latent(self, image, vae_scaling_factor) -> torch.Tensor:
        tensor_to_pil = T.ToPILImage()
        image = (image / 2 + 0.5).clamp(0, 1)
        image = tensor_to_pil(image)
        return image