|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-large-v3 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-large-v3-pt-1000h |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba |
|
default |
|
type: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba |
|
args: default |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.11132023872721715 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-large-v3-pt-1000h |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5576 |
|
- Wer: 0.1113 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10000 |
|
- training_steps: 82000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 0.2717 | 0.39 | 10000 | 0.4143 | 0.1341 | |
|
| 0.2646 | 0.79 | 20000 | 0.4141 | 0.1284 | |
|
| 0.2244 | 1.18 | 30000 | 0.5361 | 0.1253 | |
|
| 0.2056 | 1.57 | 40000 | 0.4714 | 0.1223 | |
|
| 0.2034 | 1.97 | 50000 | 0.4937 | 0.1195 | |
|
| 0.1717 | 2.36 | 60000 | 0.5127 | 0.1178 | |
|
| 0.1692 | 2.75 | 70000 | 0.6040 | 0.1146 | |
|
| 0.121 | 3.15 | 80000 | 0.5361 | 0.1130 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.1.dev0 |
|
- Tokenizers 0.15.2 |
|
|