fsicoli's picture
End of training
cadc738 verified
|
raw
history blame
2.65 kB
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
metrics:
- wer
model-index:
- name: whisper-large-v3-pt-1000h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
default
type: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
args: default
metrics:
- name: Wer
type: wer
value: 0.11132023872721715
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-pt-1000h
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5576
- Wer: 0.1113
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- training_steps: 82000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.2717 | 0.39 | 10000 | 0.4143 | 0.1341 |
| 0.2646 | 0.79 | 20000 | 0.4141 | 0.1284 |
| 0.2244 | 1.18 | 30000 | 0.5361 | 0.1253 |
| 0.2056 | 1.57 | 40000 | 0.4714 | 0.1223 |
| 0.2034 | 1.97 | 50000 | 0.4937 | 0.1195 |
| 0.1717 | 2.36 | 60000 | 0.5127 | 0.1178 |
| 0.1692 | 2.75 | 70000 | 0.6040 | 0.1146 |
| 0.121 | 3.15 | 80000 | 0.5361 | 0.1130 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1
- Datasets 2.18.1.dev0
- Tokenizers 0.15.2