fsicoli's picture
End of training
0934507 verified
|
raw
history blame
2.22 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - fsicoli/cv16-fleurs
metrics:
  - wer
model-index:
  - name: whisper-medium-pt-cv16-fleurs2-lr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fsicoli/cv16-fleurs default
          type: fsicoli/cv16-fleurs
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.103035685451316

whisper-medium-pt-cv16-fleurs2-lr

This model is a fine-tuned version of openai/whisper-medium on the fsicoli/cv16-fleurs default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1601
  • Wer: 0.1030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.25e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • training_steps: 25000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0856 2.3343 5000 0.1601 0.1030
0.0156 4.6685 10000 0.1831 0.1003
0.0189 7.0028 15000 0.1996 0.0980
0.0052 9.3371 20000 0.2079 0.0956
0.0035 11.6713 25000 0.2088 0.0932

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1