fsicoli's picture
Update README.md
32af7e9 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - fsicoli/cv19-fleurs
metrics:
  - wer
model-index:
  - name: whisper-medium-pt-cv19-fleurs2-lr-wu
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fsicoli/cv19-fleurs default
          type: fsicoli/cv19-fleurs
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.0949

whisper-medium-pt-cv19-fleurs2-lr-wu

This model is a fine-tuned version of openai/whisper-medium on the fsicoli/cv19-fleurs default dataset in Portuguese. It achieves the following results on the evaluation set:

  • Loss: 0.2108
  • Wer: 0.0949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.25e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 25000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0339 2.2883 5000 0.1694 0.1025
0.0281 4.5767 10000 0.1852 0.1005
0.0139 6.8650 15000 0.2092 0.1002
0.0044 9.1533 20000 0.2087 0.0960
0.0055 11.4416 25000 0.2108 0.0949

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1