Edit model card

Model Card for Model ID

This is a fine-tuned version of the pre-trained biomedical language model bsc-bio-ehr-es in Spanish, tailored for text classification tasks. We used two NVIDIA GPUs for training.

Model Details

Model Description

This model has been fine-tuned for text classification on dermatological Spanish electronic health records (EHR). It leverages the pre-trained biomedical language understanding from the bsc-bio-ehr-es model and adapts it to classify dermatology-related texts effectively. The model is intended to predict among 25 different skin diseases from a medical record. It could be a first visit or a follow-up visit. It takes as input four features:

  • textual medical record: the EHR written by a doctor
  • disease type: the type of disease associated with the EHR
  • disease location: the location in the body of the disease
  • disease severity: how severe or lethal is the disease

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

Model Sources [optional]

  • Repository:
  • Paper [optional]: Coming soon...
  • Demo [optional]: [More Information Needed]

Uses

The Model is meant to be used for research ONLY ! The industrial version of the model is called predict-dermat and is meant to predict not only the disease but also the 3 features mentionned above. We DO NOT recommend to fine-tune this model. It is already meant to be a downstream task.

Direct Use

This model can be directly used for classifying dermatological text data in Spanish EHRs.

Downstream Use

The model can be integrated into healthcare applications for automatic classification of dermatological conditions from patient records.

Out-of-Scope Use

The model is not suitable for non-medical text classification tasks or for texts in languages other than Spanish.

Bias, Risks, and Limitations

This model is fine-tuned on a specific dataset and may not generalize well to other types of medical texts or conditions. Users should be cautious of biases in the training data that could affect the model's performance.

Recommendations

Users should validate the model's performance on their specific data and consider any ethical implications of deploying a machine learning model in a healthcare setting.

How to Get Started with the Model

from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,

tokenizer = RobertaTokenizerFast.from_pretrained("fundacionctic/oracle-dermat")
model = RobertaForSequenceClassification.from_pretrained("fundacionctic/oracle-dermat")


inputs = tokenizer("Ejemplo de texto dermatológico".tolist(),
            truncation=True,
            padding='max_length',
            max_length=max_length,  # Replace with your desired maximum sequence length
            return_tensors='pt',
            return_attention_mask=True,
        ))
outputs = model(input_ids, attention_mask=attention_mask)

[More Information Needed]

Training Details

Training Data

The model was fine-tuned on the DermatES dataset from Fundación CTIC, which contains Spanish dermatological EHRs.

Training Procedure

The training used two NVIDIA GPUs (11gb and 49gb)

Preprocessing

Lowercased, anonymized and accents removed texts

Training Hyperparameters

  • Training regime: fp32

Speeds, Sizes, Times

Epochs: 9
Batch size: 64
Learning rate: 0.0001

Evaluation

Testing Data, Factors & Metrics

Testing Data

The evaluation was performed on 0.2 of the DermatES dataset.

Factors

[More Information Needed]

Metrics

- *Accuracy:* 0.84
- *F1 Score:* 0.75
- *top-k (k=2) accuracy:* 0.92
- *top-k (k=2) f1 Score:* 0.90

Summary

The model achieves high accuracy and F1 score on dermatological text classification, demonstrating its effectiveness for this specific medical domain.

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications

Model Architecture and Objective

The model is based on the RoBERTa architecture, fine-tuned for the objective of text classification in the biomedical domain.

Compute Infrastructure

Hardware

Two NVIDIA GPUs were used for the fine-tuning process.

Software

The fine-tuning was performed using the 🤗 Transformers library.

Citation [optional]

BibTeX: Coming soon

APA:

[More Information Needed]

Glossary [optional]

More Information [optional]

[More Information Needed]

Model Card Authors

Leon-Paul Schaub Torre, Pelayo Quiros and Helena Garcia-Mieres

Model Card Contact

leon.schaub@fundacionctic.org pelayo.quiros@fundacionctic.org

Downloads last month
2
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train fundacionctic/oracle-dermat