bert-tiny-finetuned-ner

This model is a fine-tuned version of prajjwal1/bert-tiny on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1689
  • Precision: 0.8083
  • Recall: 0.8274
  • F1: 0.8177
  • Accuracy: 0.9598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0355 1.0 878 0.1692 0.8072 0.8248 0.8159 0.9594
0.0411 2.0 1756 0.1678 0.8101 0.8277 0.8188 0.9600
0.0386 3.0 2634 0.1697 0.8103 0.8269 0.8186 0.9599
0.0373 4.0 3512 0.1694 0.8106 0.8263 0.8183 0.9600
0.0383 5.0 4390 0.1689 0.8083 0.8274 0.8177 0.9598

Framework versions

  • Transformers 4.10.0
  • Pytorch 1.9.0+cu102
  • Datasets 1.11.0
  • Tokenizers 0.10.3
Downloads last month
87
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gagan3012/bert-tiny-finetuned-ner

Spaces using gagan3012/bert-tiny-finetuned-ner 3

Evaluation results