Edit model card

Wav2Vec2-Large-XLSR-53-Nepali

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Nepali using the Common Voice, and OpenSLR ne.

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

!wget https://www.openslr.org/resources/43/ne_np_female.zip
!unzip ne_np_female.zip
!ls ne_np_female

colnames=['path','sentence'] 
df  = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'

train, test = train_test_split(df, test_size=0.1)

test.to_csv('/content/ne_np_female/line_index_test.csv')

test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train')

processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") 

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Result

Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']

Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']

Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, e.g. French

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

!wget https://www.openslr.org/resources/43/ne_np_female.zip
!unzip ne_np_female.zip
!ls ne_np_female

colnames=['path','sentence'] 
df  = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'

train, test = train_test_split(df, test_size=0.1)

test.to_csv('/content/ne_np_female/line_index_test.csv')

test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train')
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") 
model.to("cuda")

chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'  
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

\twith torch.no_grad():
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

\tpred_ids = torch.argmax(logits, dim=-1)
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\treturn batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 05.97 %

Training

The script used for training can be found here

Downloads last month
227
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gagan3012/wav2vec2-xlsr-nepali

Evaluation results