File size: 5,446 Bytes
9c1bbd1
 
515e217
 
 
9c1bbd1
515e217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c1bbd1
 
 
515e217
 
 
9662c83
515e217
 
9c1bbd1
 
ac53881
515e217
 
 
 
 
 
 
 
 
 
 
 
 
420f03d
 
 
 
 
9662c83
420f03d
 
 
 
 
 
 
515e217
9c1bbd1
 
515e217
 
 
 
 
 
9662c83
 
 
515e217
 
 
 
 
9662c83
515e217
 
 
 
 
9c1bbd1
515e217
9c1bbd1
515e217
9c1bbd1
 
 
515e217
 
 
 
 
 
 
 
 
 
 
 
 
420f03d
 
 
 
 
9662c83
420f03d
 
 
 
 
 
 
515e217
 
9c1bbd1
 
515e217
 
9662c83
515e217
 
 
 
 
9662c83
 
 
 
515e217
 
 
 
 
 
9662c83
515e217
9662c83
 
515e217
9662c83
 
 
515e217
 
 
 
 
9c1bbd1
515e217
9662c83
515e217
 
 
9c1bbd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---

language: ne
datasets:
- OpenSLR
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: wav2vec2-xlsr-nepali 
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: OpenSLR ne 
      type: OpenSLR
      args: ne
    metrics:
       - name: Test WER
         type: wer
         value: 05.97
---

# Wav2Vec2-Large-XLSR-53-Nepali 

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Nepali using the [Common Voice](https://huggingface.co/datasets/common_voice), and [OpenSLR ne](http://www.openslr.org/43/). 

When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

!wget https://www.openslr.org/resources/43/ne_np_female.zip
!unzip ne_np_female.zip
!ls ne_np_female

colnames=['path','sentence'] 
df  = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'

train, test = train_test_split(df, test_size=0.1)

test.to_csv('/content/ne_np_female/line_index_test.csv')

test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train')

processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") 

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

```
#### Result 

Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']

Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']

## Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice.  # TODO: replace #TODO: replace language with your {language}, *e.g.* French


```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

!wget https://www.openslr.org/resources/43/ne_np_female.zip
!unzip ne_np_female.zip
!ls ne_np_female

colnames=['path','sentence'] 
df  = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'

train, test = train_test_split(df, test_size=0.1)

test.to_csv('/content/ne_np_female/line_index_test.csv')

test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train')
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") 
model.to("cuda")

chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'  
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

\twith torch.no_grad():
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

\tpred_ids = torch.argmax(logits, dim=-1)
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\treturn batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

```

**Test Result**: 05.97 %  

## Training

The script used for training can be found [here](https://colab.research.google.com/drive/1AHnYWXb5cwfMEa2o4O3TSdasAR3iVBFP?usp=sharing)