distilbert-finetuned-lr1e-06-epochs50

This model is a fine-tuned version of distilbert-base-cased-distilled-squad on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1397

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 10 5.6380
No log 2.0 20 5.2148
No log 3.0 30 4.9729
No log 4.0 40 4.8036
No log 5.0 50 4.6566
No log 6.0 60 4.5248
No log 7.0 70 4.4054
No log 8.0 80 4.2868
No log 9.0 90 4.1864
No log 10.0 100 4.0935
No log 11.0 110 4.0126
No log 12.0 120 3.9390
No log 13.0 130 3.8698
No log 14.0 140 3.8036
No log 15.0 150 3.7400
No log 16.0 160 3.6834
No log 17.0 170 3.6343
No log 18.0 180 3.5871
No log 19.0 190 3.5456
No log 20.0 200 3.5103
No log 21.0 210 3.4753
No log 22.0 220 3.4419
No log 23.0 230 3.4087
No log 24.0 240 3.3805
No log 25.0 250 3.3562
No log 26.0 260 3.3345
No log 27.0 270 3.3151
No log 28.0 280 3.2957
No log 29.0 290 3.2772
No log 30.0 300 3.2620
No log 31.0 310 3.2497
No log 32.0 320 3.2358
No log 33.0 330 3.2254
No log 34.0 340 3.2158
No log 35.0 350 3.2057
No log 36.0 360 3.1972
No log 37.0 370 3.1877
No log 38.0 380 3.1800
No log 39.0 390 3.1722
No log 40.0 400 3.1664
No log 41.0 410 3.1630
No log 42.0 420 3.1585
No log 43.0 430 3.1538
No log 44.0 440 3.1488
No log 45.0 450 3.1454
No log 46.0 460 3.1422
No log 47.0 470 3.1414
No log 48.0 480 3.1407
No log 49.0 490 3.1399
2.8494 50.0 500 3.1397

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.