gary109's picture
update model card README.md
d4576b6
|
raw
history blame
7.88 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - ai_light_dance
metrics:
  - wer
model-index:
  - name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v6-1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ai_light_dance
          type: ai_light_dance
          config: onset-idmt-mdb-enst2
          split: train
          args: onset-idmt-mdb-enst2
        metrics:
          - name: Wer
            type: wer
            value: 0.3770560944749051

ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v6-1

This model is a fine-tuned version of gary109/ai-light-dance_drums_pretrain_wav2vec2-base-new on the ai_light_dance dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6990
  • Wer: 0.3771

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
17.2739 0.99 35 2.9041 1.0
1.8424 1.99 70 3.5055 1.0
1.7092 2.99 105 2.0046 1.0
1.5022 3.99 140 1.9662 0.9675
1.2964 4.99 175 1.9017 0.5504
1.1235 5.99 210 1.9875 0.4644
1.1056 6.99 245 1.8791 0.4762
0.8907 7.99 280 1.4811 0.4673
0.8605 8.99 315 1.9114 0.4479
0.8498 9.99 350 1.2107 0.4728
0.7205 10.99 385 1.5744 0.4526
0.8417 11.99 420 1.4689 0.4534
0.7734 12.99 455 1.3531 0.4551
0.7762 13.99 490 1.2924 0.4665
0.6812 14.99 525 1.0827 0.4100
0.7245 15.99 560 1.4070 0.4353
0.6508 16.99 595 1.0520 0.4087
0.7144 17.99 630 1.0729 0.4209
0.6566 18.99 665 1.1672 0.4053
0.5802 19.99 700 1.0129 0.4015
0.5924 20.99 735 1.0762 0.4007
0.7051 21.99 770 1.0253 0.4028
0.5669 22.99 805 1.0526 0.4188
0.6209 23.99 840 1.0177 0.4213
0.635 24.99 875 0.9299 0.4019
0.5914 25.99 910 1.0058 0.4142
0.5983 26.99 945 0.9720 0.4142
0.5631 27.99 980 0.8983 0.4028
0.552 28.99 1015 0.9148 0.4184
0.5213 29.99 1050 1.0817 0.4142
0.5387 30.99 1085 0.9432 0.4188
0.5276 31.99 1120 1.1207 0.4007
0.5778 32.99 1155 0.9254 0.4150
0.5001 33.99 1190 1.0393 0.4192
0.5329 34.99 1225 0.9109 0.3965
0.5168 35.99 1260 0.8983 0.4298
0.4918 36.99 1295 0.8412 0.4087
0.5651 37.99 1330 0.8560 0.4218
0.438 38.99 1365 0.8556 0.4171
0.4808 39.99 1400 0.8320 0.4175
0.5372 40.99 1435 0.9745 0.3956
0.4814 41.99 1470 0.8033 0.4121
0.4416 42.99 1505 0.8195 0.3990
0.4958 43.99 1540 0.8264 0.3956
0.4665 44.99 1575 0.8172 0.4070
0.4196 45.99 1610 0.7971 0.3952
0.4088 46.99 1645 0.7417 0.3880
0.4308 47.99 1680 0.7806 0.3931
0.4173 48.99 1715 0.7380 0.3922
0.4653 49.99 1750 0.8962 0.4028
0.4406 50.99 1785 0.7790 0.3935
0.4664 51.99 1820 0.9173 0.3893
0.4486 52.99 1855 0.8235 0.3922
0.4137 53.99 1890 0.8032 0.3927
0.4402 54.99 1925 0.7658 0.3830
0.4101 55.99 1960 0.8621 0.3994
0.5239 56.99 1995 0.7903 0.3956
0.4151 57.99 2030 0.7849 0.3872
0.4766 58.99 2065 0.8306 0.3918
0.4882 59.99 2100 0.8134 0.3927
0.4583 60.99 2135 0.9527 0.3851
0.4284 61.99 2170 0.9743 0.3998
0.46 62.99 2205 0.7807 0.3830
0.4039 63.99 2240 0.8864 0.3884
0.3868 64.99 2275 0.7304 0.3817
0.3934 65.99 2310 0.8758 0.3846
0.3776 66.99 2345 0.8156 0.3762
0.3499 67.99 2380 0.8143 0.3889
0.4055 68.99 2415 0.7503 0.3796
0.3505 69.99 2450 0.7138 0.3804
0.3755 70.99 2485 0.8072 0.3800
0.3594 71.99 2520 0.7692 0.3851
0.3167 72.99 2555 0.6995 0.3745
0.3915 73.99 2590 0.6712 0.3762
0.3741 74.99 2625 0.7139 0.3800
0.3708 75.99 2660 0.7065 0.3834
0.3731 76.99 2695 0.7316 0.3754
0.3785 77.99 2730 0.7071 0.3758
0.3466 78.99 2765 0.7362 0.3834
0.3505 79.99 2800 0.6965 0.3800
0.4003 80.99 2835 0.7521 0.3766
0.3723 81.99 2870 0.7617 0.3749
0.4029 82.99 2905 0.7659 0.3813
0.3478 83.99 2940 0.7077 0.3834
0.3363 84.99 2975 0.7333 0.3787
0.4228 85.99 3010 0.7196 0.3745
0.3823 86.99 3045 0.7195 0.3754
0.3574 87.99 3080 0.7137 0.3796
0.3371 88.99 3115 0.7164 0.3762
0.3548 89.99 3150 0.7766 0.3792
0.4042 90.99 3185 0.7588 0.3766
0.3989 91.99 3220 0.7311 0.3775
0.3625 92.99 3255 0.7475 0.3745
0.3036 93.99 3290 0.7138 0.3716
0.5157 94.99 3325 0.7246 0.3787
0.4072 95.99 3360 0.7322 0.3762
0.3406 96.99 3395 0.7134 0.3771
0.2987 97.99 3430 0.6951 0.3754
0.3355 98.99 3465 0.7005 0.3766
0.341 99.99 3500 0.6990 0.3771

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.8.1+cu111
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2