metadata
datasets:
- hotpot_qa
- canard
Model Card for T5-LM-Large_Canard-HotpotQA-rephrase
This model is trained on three objectives: (1) Generating answers for Canard dataset, (2) Generating answers for HotpotQA, (3) Rephrasing questions by the previous conversations of Canard.
Training
The model was trained using the following script, exported from the corresponding Jupyter notebook. All details, including the request format, can be inferred without errors from the code. The best checkpoint was picked by a minimal loss on all (3) training objectives.
import datasets
canard_train_augm = datasets.load_from_disk("canard_train_augm_full.hf") # constructed in notebook: 2.1_construct_qa_dataset.ipynb
canard_test_augm = datasets.load_from_disk("canard_test_augm_full.hf")
canard_df = canard_train_augm.to_pandas()
canard_test_df = canard_train_augm.to_pandas()
### Curation of seq2seq input contexts and labels
import random
def input_context_from_sample(row: dict, max_length=5) -> str:
context = "Previous conversation:"
context += "\nQuestion: "
context += ", ".join(row["History"][:3])
for i in range(3, len(row["History"]), 2):
context += "\nAnswer: "
context += row["History"][i]
if i+1 < len(row["History"]):
context += "\nQuestion: "
context += row["History"][i+1]
context += "\n\nCurrent Question: "
context += row["Question"]
context += "\nSearch results:"
all_contexts = row["retrieved_contexts"].tolist()[:max_length-1] + [row["true_contexts"]]
random.shuffle(all_contexts)
for i, search_result in enumerate(all_contexts):
context += "\n[%s]: " % (i+1)
context += search_result.replace("CANNOTANSWER", "")
context += "\nCurrent Answer: "
return context
def rephrasing_context_from_sample(row: dict) -> str:
context = "Previous conversation:"
context += "\nQuestion: "
context += ", ".join(row["History"][:3])
for i in range(3, len(row["History"]), 2):
context += "\nAnswer: "
context += row["History"][i]
if i+1 < len(row["History"]):
context += "\nQuestion: "
context += row["History"][i+1]
context += "\n\nCurrent Question: "
context += row["Question"]
context += "\nMore specific question: "
return context
def hotpotqa_context(row: dict) -> str:
context = "Current Question: "
context += row["question"]
context += "\nSearch results:"
all_contexts = [" ".join(context) for context in row["context"]["sentences"]]
for i, search_result in enumerate(all_contexts):
context += "\n[%s]: " % (i+1)
# context += search_result.replace("CANNOTANSWER", "")
context += "\nCurrent Answer: "
return context
input_texts = canard_df.apply(lambda row: input_context_from_sample(row), axis=1).values
input_val_texts = canard_test_df.iloc[:200].apply(lambda row: input_context_from_sample(row), axis=1).values
too_long_index = [len(t) > 20000 for t in input_texts]
input_texts = [t for i, t in enumerate(input_texts) if not too_long_index[i]]
print("training on %s samples" % len(input_texts))
labels = canard_df.answer.apply(lambda ans: "No answer" if ans == "CANNOTANSWER" else ans).values
labels = [l for i, l in enumerate(labels) if not too_long_index[i]]
val_labels = canard_test_df.answer.apply(lambda ans: "No answer" if ans == "CANNOTANSWER" else ans).values
rephrasing_inputs = canard_df.apply(lambda row: rephrasing_context_from_sample(row), axis=1).values
print(rephrasing_inputs[0])
rephrasing_val_inputs = canard_test_df.apply(lambda row: rephrasing_context_from_sample(row), axis=1).values
rephrasing_labels = canard_df.Rewrite.values
rephrasing_val_labels = canard_test_df.Rewrite.values
print(rephrasing_labels[0])
# Training
from adaptor.lang_module import LangModule
lang_module = LangModule("google/t5-large-lm-adapt")
from adaptor.evaluators.generative import ROUGE, BLEU
evaluators = [BLEU(), ROUGE()]
from adaptor.objectives.seq2seq import Sequence2Sequence
seq_qa = Sequence2Sequence(lang_module,
texts_or_path=input_texts,
labels_or_path=labels,
val_texts_or_path=input_val_texts,
val_labels_or_path=val_labels,
batch_size=4,
val_evaluators=evaluators,
objective_id="Canard")
hotpot_train = datasets.load_dataset("hotpot_qa", "distractor")["train"]
hotpot_val = datasets.load_dataset("hotpot_qa", "distractor")["validation"]
hotpot_inputs = hotpot_train.to_pandas().apply(hotpotqa_context, axis=1)
hotpot_val_inputs = hotpot_val.to_pandas().apply(hotpotqa_context, axis=1)
too_long_index = [len(t) > 20000 for t in hotpot_inputs]
hotpot_inputs = [t for i, t in enumerate(hotpot_inputs) if not too_long_index[i]]
hotpot_answers = [t for i, t in enumerate(hotpot_train["answer"]) if not too_long_index[i]]
seq_additional_qa = Sequence2Sequence(lang_module,
texts_or_path=hotpot_inputs,
labels_or_path=hotpot_answers,
val_texts_or_path=hotpot_val_inputs[:200],
val_labels_or_path=hotpot_val["answer"][:200],
batch_size=4,
val_evaluators=evaluators,
objective_id="HotpotQA",
share_other_objective_head=seq_qa)
seq_rephrasing = Sequence2Sequence(lang_module,
texts_or_path=rephrasing_inputs,
labels_or_path=rephrasing_labels,
val_texts_or_path=rephrasing_val_inputs[:200],
val_labels_or_path=rephrasing_val_labels[:200],
batch_size=4,
val_evaluators=evaluators,
objective_id="rephrasing",
share_other_objective_head=seq_qa)
from adaptor.utils import AdaptationArguments, StoppingStrategy
training_arguments = AdaptationArguments(output_dir="checkpoints-chatbot",
learning_rate=5e-5,
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
stopping_patience=8,
save_total_limit=8,
do_train=True,
do_eval=True,
bf16=True,
warmup_steps=1000,
gradient_accumulation_steps=8,
logging_steps=10,
eval_steps=200,
save_steps=1000,
num_train_epochs=10,
evaluation_strategy="steps")
from adaptor.schedules import ParallelSchedule
from adaptor.adapter import Adapter
schedule = ParallelSchedule(objectives=[seq_qa, seq_additional_qa, seq_rephrasing],
args=training_arguments)
adapter = Adapter(lang_module, schedule, args=training_arguments)
adapter.train()
Usage
See the prompting templates used in training to infer the optimal prompting format.
Contact
Feel free to ask questions at stefanik{at} gaussalgo.com