gaverfraxz's picture
Adding Evaluation Results (#1)
8c98099 verified
---
license: llama3.1
library_name: transformers
tags:
- mergekit
- merge
base_model:
- mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
- meta-llama/Meta-Llama-3.1-8B
- meta-llama/Meta-Llama-3.1-8B-Instruct
model-index:
- name: Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 45.51
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gaverfraxz/Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 28.91
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gaverfraxz/Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.63
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gaverfraxz/Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.24
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gaverfraxz/Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.59
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gaverfraxz/Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.76
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gaverfraxz/Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES
name: Open LLM Leaderboard
---
# Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) as a base.
### Models Merged
The following models were included in the merge:
* [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated)
* [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: meta-llama/Meta-Llama-3.1-8B
chat_template: auto
dtype: float16
merge_method: ties
models:
- model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
parameters:
density: 0.5
weight: 0.5
- model: meta-llama/Meta-Llama-3.1-8B-Instruct
parameters:
density: 0.5
weight: 0.5
parameters:
int8_mask: true
normalize: false
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_gaverfraxz__Meta-Llama-3.1-8B-Instruct-HalfAbliterated-TIES)
| Metric |Value|
|-------------------|----:|
|Avg. |20.77|
|IFEval (0-Shot) |45.51|
|BBH (3-Shot) |28.91|
|MATH Lvl 5 (4-Shot)|11.63|
|GPQA (0-shot) | 2.24|
|MuSR (0-shot) | 6.59|
|MMLU-PRO (5-shot) |29.76|